2,461 research outputs found
Cosmic shear results from the deep lens survey - I: Joint constraints on omega_m and sigma_8 with a two-dimensional analysis
We present a cosmic shear study from the Deep Lens Survey (DLS), a deep BVRz
multi-band imaging survey of five 4 sq. degree fields with two National Optical
Astronomy Observatory (NOAO) 4-meter telescopes at Kitt Peak and Cerro Tololo.
For both telescopes, the change of the point-spread-function (PSF) shape across
the focal plane is complicated, and the exposure-to-exposure variation of this
position-dependent PSF change is significant. We overcome this challenge by
modeling the PSF separately for individual exposures and CCDs with principal
component analysis (PCA). We find that stacking these PSFs reproduces the final
PSF pattern on the mosaic image with high fidelity, and the method successfully
separates PSF-induced systematics from gravitational lensing effects. We
calibrate our shears and estimate the errors, utilizing an image simulator,
which generates sheared ground-based galaxy images from deep Hubble Space
Telescope archival data with a realistic atmospheric turbulence model. For
cosmological parameter constraints, we marginalize over shear calibration
error, photometric redshift uncertainty, and the Hubble constant. We use
cosmology-dependent covariances for the Markov Chain Monte Carlo analysis and
find that the role of this varying covariance is critical in our parameter
estimation. Our current non-tomographic analysis alone constrains the
Omega_M-sigma_8 likelihood contour tightly, providing a joint constraint of
Omega_M=0.262+-0.051 and sigma_8=0.868+-0.071. We expect that a future DLS
weak-lensing tomographic study will further tighten these constraints because
explicit treatment of the redshift dependence of cosmic shear more efficiently
breaks the Omega_M-sigma_8 degeneracy. Combining the current results with the
Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) likelihood data, we obtain
Omega_M=0.278+-0.018 and sigma_8=0.815+-0.020.Comment: Accepted to ApJ. Replaced with the accepted versio
Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography
We present a tomographic cosmic shear study from the Deep Lens Survey (DLS),
which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a
pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on
depth. Using five tomographic redshift bins, we study their auto- and
cross-correlations to constrain cosmological parameters. We use a
luminosity-dependent nonlinear model to account for the astrophysical
systematics originating from intrinsic alignments of galaxy shapes. We find
that the cosmological leverage of the DLS is among the highest among existing
>10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year
results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives
Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011},
H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing
the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume
flatness for LCDM, we obtain the curvature constraint
Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however
is not well constrained when WMAP9 is used alone. The dark energy equation of
state parameter w is tightly constrained when Baryonic Acoustic Oscillation
(BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO
joint probe. The addition of supernova constraints further tightens the
parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the
final Planck results and also the predictions of a LCDM universe.Comment: Accepted for publication in Ap
Scaling Relations and Overabundance of Massive Clusters at z>~1 from Weak-Lensing Studies with HST
We present weak gravitational lensing analysis of 22 high-redshift (z >~1)
clusters based on Hubble Space Telescope images. Most clusters in our sample
provide significant lensing signals and are well detected in their
reconstructed two-dimensional mass maps. Combining the current results and our
previous weak-lensing studies of five other high-z clusters, we compare
gravitational lensing masses of these clusters with other observables. We
revisit the question whether the presence of the most massive clusters in our
sample is in tension with the current LambdaCDM structure formation paradigm.
We find that the lensing masses are tightly correlated with the gas
temperatures and establish, for the first time, the lensing mass-temperature
relation at z >~ 1. For the power law slope of the M-TX relation (M propto
T^{\alpha}), we obtain \alpha=1.54 +/- 0.23. This is consistent with the
theoretical self-similar prediction \alpha=3/2 and with the results previously
reported in the literature for much lower redshift samples. However, our
normalization is lower than the previous results by 20-30%, indicating that the
normalization in the M-TX relation might evolve. After correcting for Eddington
bias and updating the discovery area with a more conservative choice, we find
that the existence of the most massive clusters in our sample still provides a
tension with the current Lambda CDM model. The combined probability of finding
the four most massive clusters in this sample after marginalization over
current cosmological parameters is less than 1%.Comment: ApJ in press. See http://www.supernova.lbl.gov for additional
information pertaining to the HST Cluster SN Surve
Rings of Dark Matter in Collisions Between Clusters of Galaxies
Several lines of evidence suggest that the galaxy cluster Cl0024+17, an
apparently relaxed system, is actually a collision of two clusters, the
interaction occurring along our line of sight. Recent lensing observations
suggest the presence of a ring-like dark matter structure, which has been
interpreted as the result of such a collision. In this paper we present
-body simulations of cluster collisions along the line of sight to
investigate the detectability of such features. We use realistic dark matter
density profiles as determined from cosmological simulations. Our simulations
show a "shoulder" in the dark matter distribution after the collision, but no
ring feature even when the initial particle velocity distribution is highly
tangentially anisotropic (). Only when the initial
particle velocity distribution is circular do our simulations show such a
feature. Even modestly anisotropic velocity distributions are inconsistent with
the halo velocity distributions seen in cosmological simulations, and would
require highly fine-tuned initial conditions. Our investigation leaves us
without an explanation for the dark matter ring-like feature in Cl 0024+17
suggested by lensing observations.Comment: 7 pages (emulateapj), 9 figures. Expanded figures and text to match
accepted versio
Galaxy-Mass Correlations on 10 Mpc Scales in the Deep Lens Survey
We examine the projected correlation of galaxies with mass from small scales
(<few hundred kpc) where individual dark matter halos dominate, out to 15 Mpc
where correlated large-scale structure dominates. We investigate these profiles
as a function of galaxy luminosity and redshift. Selecting 0.8 million galaxies
in the Deep Lens Survey, we use photometric redshifts and stacked weak
gravitational lensing shear tomography out to radial scales of 1 degree from
the centers of foreground galaxies. We detect correlated mass density from
multiple halos and large-scale structure at radii larger than the virial
radius, and find the first observational evidence for growth in the galaxy-mass
correlation on 10 Mpc scales with decreasing redshift and fixed range of
luminosity. For a fixed range of redshift, we find a scaling of projected halo
mass with rest-frame luminosity similar to previous studies at lower redshift.
We control systematic errors in shape measurement and photometric redshift,
enforce volume completeness through absolute magnitude cuts, and explore
residual sample selection effects via simulations.Comment: 13 pages, 9 figures, re-submitted to ApJ after addressing referee
comment
HST/Acs Weak-Lensing and Chandra X-Ray Studies of the High-Redshift Cluster MS 1054-0321
We present Hubble Space Telescope/Advanced Camera for Surveys (ACS)
weak-lensing and Chandra X-ray analyses of MS 1054-0321 at z=0.83, the most
distant and X-ray luminous cluster in the Einstein Extended Medium-Sensitivity
Survey (EMSS). The high-resolution mass reconstruction through ACS weak-lensing
reveals the complicated dark matter substructure in unprecedented detail,
characterized by the three dominant mass clumps with the four or more minor
satellite groups within the current ACS field. The direct comparison of the
mass map with the Chandra X-ray image shows that the eastern weak-lensing
substructure is not present in the X-ray image and, more interestingly, the two
X-ray peaks are displaced away from the hypothesized merging direction with
respect to the corresponding central and western mass clumps, possibly because
of ram pressure. In addition, as observed in our previous weak-lensing study of
another high-redshift cluster CL 0152-1357 at z=0.84, the two dark matter
clumps of MS 1054-0321 seem to be offset from the galaxy counterparts. We
examine the significance of these offsets and discuss a possible scenario,
wherein the dark matter clumps might be moving ahead of the cluster galaxies.
The non-parametric weak-lensing mass modeling gives a projected mass of M(r<1
Mpc)=(1.02+-0.15)x 10^{15} solar mass, where the uncertainty reflects both the
statistical error and the cosmic shear effects. Our temperature measurement of
T=8.9_{-0.8}^{+1.0} keV utilizing the newest available low-energy quantum
efficiency degradation prescription for the Chandra instrument, together with
the isothermal beta description of the cluster (r_c=16"+-15" and
beta=0.78+-0.08), yields a projected mass of M(r<1 Mpc)=(1.2+-0.2) x 10^{15}
solar mass, consistent with the weak-lensing result.Comment: Accepted for publication in apj. Full-resolution version can be
downloaded from http://acs.pha.jhu.edu/~mkjee/ms1054.pd
XMMU J100750.5+125818: A strong lensing cluster at z=1.082
We report on the discovery of the X-ray luminous cluster XMMU
J100750.5+125818 at redshift 1.082 based on 19 spectroscopic members, which
displays several strong lensing features. SED modeling of the lensed arc
features from multicolor imaging with the VLT and the LBT reveals likely
redshifts ~2.7 for the most prominent of the lensed background galaxies. Mass
estimates are derived for different radii from the velocity dispersion of the
cluster members, M_200 ~ 1.8 10^{14} Msun, from the X-ray spectral parameters,
M_500 ~ 1.0 10^{14} Msun, and the largest lensing arc, M_SL ~ 2.3 10^{13} Msun.
The projected spatial distribution of cluster galaxies appears to be elongated,
and the brightest galaxy lies off center with respect to the X-ray emission
indicating a not yet relaxed structure. XMMU J100750.5+125818 offers excellent
diagnostics of the inner mass distribution of a distant cluster with a
combination of strong and weak lensing, optical and X-ray spectroscopy.Comment: A&A, accepted for publicatio
Missing Dark Matter in the Local Universe
A sample of 11 thousand galaxies with radial velocities V_ LG < 3500 km/s is
used to study the features of the local distribution of luminous (stellar) and
dark matter within a sphere of radius of around 50 Mpc around us. The average
density of matter in this volume, Omega_m,loc=0.08+-0.02, turns out to be much
lower than the global cosmic density Omega_m,glob=0.28+-0.03. We discuss three
possible explanations of this paradox: 1) galaxy groups and clusters are
surrounded by extended dark halos, the major part of the mass of which is
located outside their virial radii; 2) the considered local volume of the
Universe is not representative, being situated inside a giant void; and 3) the
bulk of matter in the Universe is not related to clusters and groups, but is
rather distributed between them in the form of massive dark clumps. Some
arguments in favor of the latter assumption are presented. Besides the two
well-known inconsistencies of modern cosmological models with the observational
data: the problem of missing satellites of normal galaxies and the problem of
missing baryons, there arises another one - the issue of missing dark matter.Comment: 19 pages, 7 figures, 1 table (accepted
Clusters at Half Hubble Time: Galaxy Structure and Colors in RXJ0152.7-1357 and MS1054-03
We study the photometric and structural properties of spectroscopically
confirmed members in the two massive X-ray--selected z=0.83 galaxy clusters
MS1054-03 and RXJ0152-1357 using three-band mosaic imaging with the Hubble
Space Telescope Advanced Camera for Surveys. The samples include 105 and 140
members of MS1054-03 and RXJ0152-1357, respectively, with ACS F775W magnitude <
24.0. We develop a promising new structural classification method, based on a
combination of the best-fit Sersic indices and the normalized root-mean-square
residuals from the fits; the resulting classes agree well with the visual ones,
but are less affected by galaxy orientation. We examine the color--magnitude
relations in detail and find that the color residuals correlate with the local
mass density measured from our weak lensing maps; we identify a threshold
density of , in units of the critical density, above which
the star formation appears to cease. For RXJ0152-1357, we also find a trend in
the color residuals with velocity, resulting from an offset of about 980 km/s
in the mean redshifts of the early- and late-type galaxies. Analysis of the
color--color diagrams indicates that a range of star formation time-scales are
needed to reproduce the loci of the galaxy colors. We also identify some
cluster galaxies whose colors can only be explained by large amounts, mag, of internal dust extinction. [Abstract shortened]Comment: 30 pages, emulateapj format; 23 figures, many in color. Accepted by
ApJ; scheduled for the 10 June 2006 issue. Some figures degraded; for a
higher resolution version, see: http://astro.wsu.edu/blakeslee/z1clusters
- …
