4 research outputs found
Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean
Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality-controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near-surface maximum rate of 1.80â±â0.45â”molâkgâ1âyrâ1. Anthropogenic CO2 accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (ÎŽ13CDIC) was also determined and used as an independent test of our method. We calculated a volume-integrated anthropogenic CO2 accumulation rate of 2.8â±â0.4âmgâCâmâ3âyrâ1 along the EEL, which is about double the global mean. The anthropogenic CO2 component accounts for only 31â±â6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas
Future Swedish 3D City Models : Specifications, Test Data, and Evaluation
Three-dimensional city models are increasingly being used for analyses and simulations. To enable such applications, it is necessary to standardise semantically richer city models and, in some cases, to connect the models with external data sources. In this study, we describe the development of a new Swedish specification for 3D city models, denoted as 3CIM, which is a joint effort between the three largest cities in SwedenâStockholm, Gothenburg, and Malmö. Technically, 3CIM is an extension of the OGC standard CityGML 2.0, implemented as an application domain extension (ADE). The ADE is semantically thin, mainly extending CityGML 2.0 to harmonise with national standards; in contrast, 3CIM is mainly based on linkages to external databases, registers, and operational systems for the semantic part. The current version, 3CIM 1.0, includes various themes, including Bridge, Building, Utility, City Furniture, Transportation, Tunnel, Vegetation, and Water. Three test areas were created with 3CIM data, one in each city. These data were evaluated in several use-cases, including visualisation as well as daylight, noise, and flooding simulations. The conclusion from these use-cases is that the 3CIM data, together with the linked external data sources, allow for the inclusion of the necessary information for the visualisation and simulations, but extract, transform, and load (ETL) processes are required to tailor the input data. The next step is to implement 3CIM within the three cities, which will entail several challenges, as discussed at the end of the paper
Future Swedish 3D City Models—Specifications, Test Data, and Evaluation
Three-dimensional city models are increasingly being used for analyses and simulations. To enable such applications, it is necessary to standardise semantically richer city models and, in some cases, to connect the models with external data sources. In this study, we describe the development of a new Swedish specification for 3D city models, denoted as 3CIM, which is a joint effort between the three largest cities in Sweden—Stockholm, Gothenburg, and Malmö. Technically, 3CIM is an extension of the OGC standard CityGML 2.0, implemented as an application domain extension (ADE). The ADE is semantically thin, mainly extending CityGML 2.0 to harmonise with national standards; in contrast, 3CIM is mainly based on linkages to external databases, registers, and operational systems for the semantic part. The current version, 3CIM 1.0, includes various themes, including Bridge, Building, Utility, City Furniture, Transportation, Tunnel, Vegetation, and Water. Three test areas were created with 3CIM data, one in each city. These data were evaluated in several use-cases, including visualisation as well as daylight, noise, and flooding simulations. The conclusion from these use-cases is that the 3CIM data, together with the linked external data sources, allow for the inclusion of the necessary information for the visualisation and simulations, but extract, transform, and load (ETL) processes are required to tailor the input data. The next step is to implement 3CIM within the three cities, which will entail several challenges, as discussed at the end of the paper