22 research outputs found

    L'observance du plan alimentaire et la satisfaction de vie chez les personnes diabétiques : contribution à long terme de l'efficacité personnelle de l'autodétermination

    Get PDF
    La prĂ©sente Ă©tude vise Ă  vĂ©rifier les contributions Ă  long terme respectives de l'efficacitĂ© personnelle et de l'autodĂ©termination sur l’observance et la satisfaction de vie des personnes atteintes de diabĂšte. L’échantillon Ă  l’étude est constituĂ© de 278 participants ayant rĂ©pondu Ă  deux envois de questionnaires Ă  16 mois d’intervalle. Les rĂ©sultats rĂ©vĂšlent que le sentiment d’efficacitĂ© personnelle s’avĂšre, Ă  long terme, un excellent prĂ©dicteur de l’observance au plan alimentaire et de la satisfaction de vie. Ils sont cependant moins patents pour ce qui est de l'autodĂ©termination, la valeur prĂ©dictive de celle-ci sur l’observance et la satisfaction de vie ne se voyant pas confirmĂ©e. Toutefois, la contribution de l’autodĂ©termination n’est pas Ă  nĂ©gliger puisque son utilisation en complĂ©mentaritĂ© avec l’efficacitĂ© personnelle laisse entrevoir une voie d’avenir intĂ©ressante

    X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    Get PDF
    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins

    Circulating miRNAs are generic and versatile therapeutic monitoring biomarkers in muscular dystrophies

    No full text
    International audienceThe development of medical approaches requires preclinical and clinical trials for assessment of therapeutic efficacy. Such evaluation entails the use of biomarkers, which provide information on the response to the therapeutic intervention. One newly-proposed class of biomarkers is the microRNA (miRNA) molecules. In muscular dystrophies (MD), the dysregulation of miRNAs was initially observed in muscle biopsy and later extended to plasma samples, suggesting that they may be of interest as biomarkers. First, we demonstrated that dystromiRs dysregulation occurs in MD with either preserved or disrupted expression of the dystrophin-associated glycoprotein complex, supporting the utilization of dystromiRs as generic biomarkers in MD. Then, we aimed at evaluation of the capacity of miRNAs as monitoring biomarkers for experimental therapeutic approach in MD. To this end, we took advantage of our previously characterized gene therapy approach in a mouse model for α-sarcoglycanopathy. We identified a dose-response correlation between the expression of miRNAs on both muscle tissue and blood serum and the therapeutic benefit as evaluated by a set of new and classically-used evaluation methods. This study supports the utility of profiling circulating miRNAs for the evaluation of therapeutic outcome in medical approaches for MD

    Lactate Fluxes and Plasticity of Adipose Tissues: A Redox Perspective

    No full text
    International audienceLactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging

    The emerging roles of lactate as a redox substrate and signaling molecule in adipose tissues

    No full text
    International audienceThermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related metabolic diseases including type II diabetes. Beside decades of research and the very well-described role of noradrenergic signaling, mechanisms underlying adipocytes plasticity and activation of thermogenic adipose tissues remain incompletely understood. Recent studies show that metabolites such as lactate control the oxidative capacity of thermogenic adipose tissues. Long time viewed as a metabolic waste product, lactate is now considered as an important metabolic substrate largely feeding the oxidative metabolism of many tissues, acting as a signaling molecule and as an inter-cellular and inter-tissular redox carrier. In this review, we provide an overview of the recent findings highlighting the importance of lactate in adipose tissues, from its production to its role as a browning inducer and its metabolic links with brown adipose tissue. We also discuss additional function(s) than thermogenesis ensured by brown and beige adipose tissues, i.e., their ability to dissipate high redox pressure and oxidative stress thanks to the activity of the uncoupling protein-1, helping to maintain tissue and whole organism redox homeostasis and integrity

    miR-708-5p and miR-34c-5p are involved in nNOS regulation in dystrophic context

    No full text
    International audienceBackground: Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the DMD gene coding for dystrophin, a protein being part of a large sarcolemmal protein scaffold that includes the neuronal nitric oxide synthase (nNOS). The nNOS was shown to play critical roles in a variety of muscle functions and alterations of its expression and location in dystrophic muscle fiber leads to an increase of the muscle fatigability. We previously revealed a decrease of nNOS expression in BMD patients all presenting a deletion of exons 45 to 55 in the DMD gene (BMDd45-55), impacting the nNOS binding site of dystrophin. Since several studies showed deregulation of microRNAs (miRNAs) in dystrophinopathies, we focused on miRNAs that could target nNOS in dystrophic context.Methods: By a screening of 617 miRNAs in BMDd45-55 muscular biopsies using TLDA and an in silico study to determine which one could target nNOS, we selected four miRNAs. In order to select those that targeted a sequence of 3â€ČUTR of NOS1, we performed luciferase gene reporter assay in HEK393T cells. Finally, expression of candidate miRNAs was modulated in control and DMD human myoblasts (DMDd45-52) to study their ability to target nNOS.Results: TLDA assay and the in silico study allowed us to select four miRNAs overexpressed in muscle biopsies of BMDd45-55 compared to controls. Among them, only the overexpression of miR-31, miR-708, and miR-34c led to a decrease of luciferase activity in an NOS1-3â€ČUTR-luciferase assay, confirming their interaction with the NOS1-3â€ČUTR. The effect of these three miRNAs was investigated on control and DMDd45-52 myoblasts. First, we showed a decrease of nNOS expression when miR-708 or miR-34c were overexpressed in control myoblasts. We then confirmed that DMDd45-52 cells displayed an endogenous increased of miR-31, miR-708, and miR-34c and a decreased of nNOS expression, the same characteristics observed in BMDd45-55 biopsies. In DMDd45-52 cells, we demonstrated that the inhibition of miR-708 and miR-34c increased nNOS expression, confirming that both miRNAs can modulate nNOS expression in human myoblasts.Conclusion: These results strongly suggest that miR-708 and miR-34c, overexpressed in dystrophic context, are new actors involved in the regulation of nNOS expression in dystrophic muscle

    miR-708-5p and miR-34c-5p are involved in nNOS regulation in dystrophic context

    No full text
    Abstract Background Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the DMD gene coding for dystrophin, a protein being part of a large sarcolemmal protein scaffold that includes the neuronal nitric oxide synthase (nNOS). The nNOS was shown to play critical roles in a variety of muscle functions and alterations of its expression and location in dystrophic muscle fiber leads to an increase of the muscle fatigability. We previously revealed a decrease of nNOS expression in BMD patients all presenting a deletion of exons 45 to 55 in the DMD gene (BMDd45-55), impacting the nNOS binding site of dystrophin. Since several studies showed deregulation of microRNAs (miRNAs) in dystrophinopathies, we focused on miRNAs that could target nNOS in dystrophic context. Methods By a screening of 617 miRNAs in BMDd45-55 muscular biopsies using TLDA and an in silico study to determine which one could target nNOS, we selected four miRNAs. In order to select those that targeted a sequence of 3â€ČUTR of NOS1, we performed luciferase gene reporter assay in HEK393T cells. Finally, expression of candidate miRNAs was modulated in control and DMD human myoblasts (DMDd45-52) to study their ability to target nNOS. Results TLDA assay and the in silico study allowed us to select four miRNAs overexpressed in muscle biopsies of BMDd45-55 compared to controls. Among them, only the overexpression of miR-31, miR-708, and miR-34c led to a decrease of luciferase activity in an NOS1-3â€ČUTR-luciferase assay, confirming their interaction with the NOS1-3â€ČUTR. The effect of these three miRNAs was investigated on control and DMDd45-52 myoblasts. First, we showed a decrease of nNOS expression when miR-708 or miR-34c were overexpressed in control myoblasts. We then confirmed that DMDd45-52 cells displayed an endogenous increased of miR-31, miR-708, and miR-34c and a decreased of nNOS expression, the same characteristics observed in BMDd45-55 biopsies. In DMDd45-52 cells, we demonstrated that the inhibition of miR-708 and miR-34c increased nNOS expression, confirming that both miRNAs can modulate nNOS expression in human myoblasts. Conclusion These results strongly suggest that miR-708 and miR-34c, overexpressed in dystrophic context, are new actors involved in the regulation of nNOS expression in dystrophic muscle
    corecore