6 research outputs found

    Effect of B-Cell Depletion on Viral Replication and Clinical Outcome of Simian Immunodeficiency Virus Infection in a Natural Host▿ †

    No full text
    Simian immunodeficiency virus (SIV)-infected African nonhuman primates do not progress to AIDS in spite of high and persistent viral loads (VLs). Some authors consider the high viral replication observed in chronic natural SIV infections to be due to lower anti-SIV antibody titers than those in rhesus macaques, suggesting a role of antibodies in controlling viral replication. We therefore investigated the impact of antibody responses on the outcome of acute and chronic SIVagm replication in African green monkeys (AGMs). Nine AGMs were infected with SIVagm.sab. Four AGMs were infused with 50 mg/kg of body weight anti-CD20 (rituximab; a gift from Genentech) every 21 days, starting from day −7 postinfection up to 184 days. The remaining AGMs were used as controls and received SIVagm only. Rituximab-treated AGMs were successfully depleted of CD20 cells in peripheral blood, lymph nodes (LNs), and intestine, as shown by the dynamics of CD20+ and CD79a+ cells. There was no significant difference in VLs between CD20-depleted AGMs and control monkeys: peak VLs ranged from 107 to 108 copies/ml; set-point values were 104 to 105 SIV RNA copies/ml. Levels of acute mucosal CD4+ T-cell depletion were similar for treated and nontreated animals. SIVagm seroconversion was delayed for the CD20-depleted AGMs compared to results for the controls. There was a significant difference in both the timing and magnitude of neutralizing antibody responses for CD20-depleted AGMs compared to results for controls. CD20 depletion significantly altered the histological structure of the germinal centers in the LNs and Peyer's patches. Our results, although obtained with a limited number of animals, suggest that humoral immune responses play only a minor role in the control of SIV viral replication during acute and chronic SIV infection in natural hosts

    Effect of Low-Dose Ritonavir on the Pharmacokinetics of the CXCR4 Antagonist AMD070 in Healthy Volunteers▿ †

    Get PDF
    AMD070, a CXCR4 antagonist, has demonstrated antiretroviral activity in human immunodeficiency virus-infected patients. Since AMD070 is a substrate of cytochrome P450 3A4 and P-glycoprotein, both of which may be affected by ritonavir, we tested for a ritonavir effect on AMD070 pharmacokinetics. Subjects were given a single 200-mg dose of AMD070 on days 1, 3, and 17. Ritonavir (100 mg every 12 h) was dosed from day 3 to day 18. Blood samples to test for AMD070 concentrations were collected over 48 h after each administration of AMD070. Twenty-three male subjects were recruited. Among them, 21 completed the study, and 2 were discontinued for reasons other than safety. All adverse events were grade 2 or lower. AMD070 alone had the following pharmacokinetic features, given as medians (ranges): 3 h (0.5 to 4 h) for the time to peak blood concentration, 256 ng/ml (41 to 845 ng/ml) for the peak concentration (Cmax), 934 h·ng/ml (313 to 2,127 h·ng/ml) for the area under the concentration-time curve from 0 h to infinity (AUC0-∞), 214 liters/h (94 to 639 liters/h) for apparent body clearance, and 4,201 liters (1,996 to 9,991 liters) for the apparent volume of distribution based on the terminal phase. The initial doses of ritonavir increased the Cmax of AMD070 [geometric mean (90% confidence interval)] by 39% (3 to 89%) and the AUC0-∞ by 60% (29 to 100%). After 14 days of ritonavir dosing, the pharmacokinetic changes in AMD070 persisted. The plasma pharmacokinetics of ritonavir were consistent with previous reports. It is concluded that AMD070 concentrations were increased with concomitant ritonavir dosing for 14 days in healthy volunteers

    Simian Immunodeficiency Virus SIVrcm, a Unique CCR2-Tropic Virus, Selectively Depletes Memory CD4+ T Cells in Pigtailed Macaques through Expanded Coreceptor Usage In Vivo â–¿

    No full text
    Simian immunodeficiency virus SIVrcm, which naturally infects red-capped mangabeys (RCMs), is the only SIV that uses CCR2 as its main coreceptor due to the high frequency of a CCR5 deletion in RCMs. We investigated the dynamics of SIVrcm infection to identify specific pathogenic mechanisms associated with this major difference in SIV biology. Four pigtailed macaques (PTMs) were infected with SIVrcm, and infection was monitored for over 2 years. The dynamics of in vivo SIVrcm replication in PTMs was similar to that of other pathogenic and nonpathogenic lymphotropic SIVs. Plasma viral loads (VLs) peaked at 107 to 109 SIVrcm RNA copies/ml by day 10 postinoculation (p.i.). A viral set point was established by day 42 p.i. at 103 to 105 SIVrcm RNA copies/ml and lasted up to day 180 p.i., when plasma VLs decreased below the threshold of detection, with blips of viral replication during the follow-up. Intestinal SIVrcm replication paralleled that of plasma VLs. Up to 80% of the CD4+ T cells were depleted by day 28 p.i. in the gut. The most significant depletion (>90%) involved memory CD4+ T cells. Partial CD4+ T-cell restoration was observed in the intestine at later time points. Effector memory CD4+ T cells were the least restored. SIVrcm strains isolated from acutely infected PTMs used CCR2 coreceptor, as reported, but expansion of coreceptor usage to CCR4 was also observed. Selective depletion of effector memory CD4+ T cells is in contrast with predicted in vitro tropism of SIVrcm for macrophages and is probably due to expansion of coreceptor usage. Taken together, these findings emphasize the importance of understanding the selective forces driving viral adaptation to a new host

    Multiple-Dose Escalation Study of the Safety, Pharmacokinetics, and Biologic Activity of Oral AMD070, a Selective CXCR4 Receptor Inhibitor, in Human Subjects▿ †

    No full text
    AMD070 is an oral CXCR4 antagonist with in vitro activity against X4-tropic human immunodeficiency virus type 1. Thirty fasting healthy male volunteers received oral doses of AMD070 ranging from a single 50-mg dose to seven 400-mg doses given every 12 h (q12h). Nine subjects received a 200-mg dose during fasting and prior to a meal. Subjects were monitored for safety and pharmacokinetics. AMD070 was well tolerated, without serious adverse events. Transient headaches (13 subjects) and neurocognitive (8 subjects) and gastrointestinal (7 subjects) symptoms were the most common complaints. Seven subjects had sinus tachycardia, and two were symptomatic. AMD070 plasma concentrations peaked 1 to 2 h after patient dosing. The estimated terminal half-life ranged from 11.2 to 15.9 h among cohorts. Dose proportionality was not demonstrated. Less than 1% of the drug appeared unchanged in the urine. Food reduced the maximum concentration of drug in serum and the area under the concentration-time curve from 0 to 24 h by 70% and 56%, respectively (P ≤ 0.01). A dose-dependent elevation of white blood cells (WBC) demonstrated a maximum twofold increase over baseline (95% confidence interval, 2.0- to 2.1-fold) in an Emax model. In healthy volunteers, AMD070 was well tolerated and demonstrated mixed-order pharmacokinetics, and food reduced drug exposure. AMD070 induced a dose-related elevation of WBC which was attributed to CXCR4 blockade. Using leukocytosis as a surrogate marker for CXCR4 inhibition, this dose-response relationship suggests that the doses used in this study were active in vivo, though not maximal, throughout the dosing interval. Trough concentrations with the 400-mg dose q12h exceeded the antiviral in vitro 90% effective concentration of AMD070

    Limited ability of humoral immune responses in control of viremia during infection with SIVsmmD215 strain

    No full text
    We investigated the impact of rhesus macaque (RM) B-cell depletion before inoculation with the isolate SIVsmmD215. Seven RMs were treated every 3 weeks with 50 mg/kg of an anti-CD20 antibody (rituximab) starting 7 days before inoculation for 2 (n = 4) and 5 (n = 3) months. Four control animals received no antibody. Three animals were completely depleted of CD20+ B cells, but 4 were only partially depleted of CD20 cells in the LNs and intestine. The decrease in antibody production was consistent with the efficacy of tissue CD20 depletion. Seroconversion and neutralizing antibody production was significantly delayed in animals showing complete tissue CD20 depletion and remained at low titers in all CD20-depleted RMs. Surprisingly, there was no significant difference in acute or chronic viral loads between CD20-depleted and control animal groups. There was a tendency for lower viral set points in CD20-depleted animals. At 6 weeks after inoculation, cellular immune responses were significantly stronger in CD20-depleted animals than in controls. There was no significant difference in survival between CD20-depleted and control animals. Our data suggest that a deficiency of Ab responses did not markedly affect viral replication or disease progression and that they may be compensated by more robust cellular responses
    corecore