291 research outputs found
Biosignatures of methanogenic archaea by Confocal Raman Microspectroscopy (CRM)
Methanogenic archaea are anaerobic chemotrophic microorganisms that meet many of the metabolic and physiological requirements for survival on the martian subsurface. In particular, methanogens from Siberian permafrost are extremely resistant against different types of environmental stresses as well as simulated martian thermo-physical and subsurface conditions, making them promising model organisms for potential life on Mars. Raman spectroscopy is a vibrational spectroscopic technique that has shown a remarkable potential in microbial identification. It provides fingerprint-like information about the overall chemical composition of the samples and allows a nondestructive investigation. The biosignatures of Methanosarcina soligelidi SMA-21 were characterized by CRM during the growth phases at a single-cell level, which presented a high heterogeneity and diversity in the chemical composition of the cells and detectible subpopulation differences. This study also highlighted potential technical challenges concerning the Raman detection of methanogenic archaea (and other non-pigmented microorganisms) embedded on a mineral substrate. The biosignatures of permafrost and non-permafrost strains in the stationary phase of growth were also characterized by CRM. A cluster analysis of the spectra revealed that permafrost and non-permafrost strains have a different overall chemical composition, which has possible evolutionary implications
Survival of lichens and bacteria exposed to outer space conditions - Results of the Lithopanspermia experiments
n the space experiments Lithopanspermia, experimental support was provided to the likelihood of the lithopanspermia concept that considers a viable transport of microorganisms between the terrestrial planets by means of meteorites. The rock colonising lichens Rhizocarpon geographicum and Xanthoria elegans, the vagrant lichen Aspicilia fruticulosa, and endolithic and endoevaporitic communities of cyanobacteria and bacteria with their natural rock substrate were exposed to space for 10 days onboard the Biopan facility of the European Space Agency (ESA). Biopan was closed during launch and re-entry. In addition, in the Stone facility, one sample of R. geographicum on its natural granitic substrate was attached at the outer surface of the re-entry capsule close to the stagnation point, only protected by a thin cover of glass textolite. Post-flight analysis, which included determination of the photosynthetic activity, LIVE/DEAD staining, and germination capacity of the ascospores, demonstrated that all three lichen were quite resistant to outer space conditions, which include the full spectrum of solar extraterrestrial electromagnetic radiation or selected wavelength ranges. This high resistance of the lichens to space appears to be due to their symbiotic nature and protection by their upper pigmented layer, the cortex. In contrast, the rock- or halite-inhabiting bacteria were severely damaged by the same exposure. After atmospheric re-entry, the granite of the Stone sample was transformed into a glassy, nearly homogenous material, with several friction striae. None of the lichen cells survived this re-entry process. The data suggest that lichens are suitable candidates for testing the concept of lithopanspermia, because they are extremely resistant to the harsh environment of outer space. The more critical event is the atmospheric re-entry after being captured by a planet. Experiments simulating the re-entry process of a microbe-carrying meteoroid did not show any survivors
Biosignature stability in space enables their use for life detection on Mars
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments
The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth
Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (spaceexposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications
Microbial Hotspots in Lithic Macrohabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert
The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rockenvironments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology
BioMoon: a concept for a mission to advance space life sciences and astrobiology on the Moon
As humans advance their presence in space and seek to improve the quality of life on Earth, a variety of science questions in support of these two objectives can be answered using the Moon. In this paper, we present a concept for an integrated mission focused on answering fundamental and applied biological questions on the Moon: BioMoon. The mission was designed to investigate the effects of the lunar radiation, gravity, and regolith on biological systems ranging from biomolecules to systems with complex trophic interactions, spanning a range of model organisms. Using common analytical systems and data processing, BioMoon represents a systems-level integrated life sciences mission. It would provide fundamental insights into biological responses to the lunar environment, as well as applied knowledge for In-Situ Resource Utilisation (ISRU), closed-loop life support system development, planetary protection and human health care. The mission was conceived to test biotechnology and sensor technology for lunar and terrestrial application and provide education and outreach opportunities. Although BioMoon was considered in the context of the European Space Agency’s Argonaut (European Large Logistics Lander) concept, the mission design provides a template for any integrated life sciences experimental suite on the Moon and other celestial bodies, implemented either robotically or by human explorers.CSC acknowledges support from the Science and Technology Facilities Council (Grants ST/V000586/1 and ST/Y001788/1).Discover Spac
Biosignature stability in space enables their use for life detection on Mars
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments
Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: A stepped-wedge cluster randomised trial
Background: Neoadjuvant chemoradiotherapy (nCRT) plus surgery is a standard treatment for locally advanced oesophageal cancer. With this treatment, 29% of patients have a pathologically complete response in the resection specimen. This provides the rationale for investigating an active surveillance approach. The aim of this study is to assess the (cost-)effectiveness of active surveillance vs. standard oesophagectomy after nCRT for oesophageal cancer. Methods: This is a phase-III multi-centre, stepped-wedge cluster randomised controlled trial. A total of 300 patients with clinically complete response (cCR, i.e. no local or disseminated disease proven by histology) after nCRT will be randomised to show non-inferiority of active surveillance to standard oesophagectomy (non-inferiority margin 15%, intra-correlation coefficient 0.02, power 80%, 2-sided α 0.05, 12% drop-out). Patients will undergo a first clinical response evaluation (CRE-I) 4-6 weeks after nCRT, consisting of endoscopy with bite-on-bite biopsies of the primary tumour site and other suspected lesions. Clinically complete responders will undergo a second CRE (CRE-II), 6-8 weeks after CRE-I. CRE-II will include 18F-FDG-PET-CT, followed by endoscopy with bite-on-bite biopsies and ultra-endosonography plus fine needle aspiration of suspected lymph nodes and/or PET- positive lesions. Patients with cCR at CRE-II will be assigned to oesophagectomy (first phase) or active surveillance (second phase of the study). The duration of the first phase is determined randomly over the 12 centres, i.e., stepped-wedge cluster design. Patients in the active surveillance arm will undergo diagnostic evaluations similar to CRE-II at 6/9/12/16/20/24/30/36/48 and 60 months after nCRT. In this arm, oesophagectomy will be offered only to patients in whom locoregional regrowth is highly suspected or proven, without distant dissemination. The main study parameter is overall survival; secondary endpoints include percentage of patients who do not undergo surgery, quality of life, clinical irresectability (cT4b) rate, radical resection rate, postoperative complications, progression-free survival, distant dissemination rate, and cost-effectiveness. We hypothesise that active surveillance leads to non-inferior survival, improved quality of life and a reduction in costs, compared to standard oesophagectomy. Discussion: If active surveillance and surgery as needed after nCRT leads to non-inferior survival compared to standard oesophagectomy, this organ-sparing approach can be implemented as a standard of care
- …