241 research outputs found

    Mediterranean cloud system variability inferred from satellite observations

    Get PDF
    International audienceThe variability of Mediterranean cloud systems is investigated using 8.5 years (from January 1987 to June 1995) of TIROS-N Operational Vertical Sounder (TOVS) observations acquired aboard the National Oceanic and Atmospheric Administration (NOAA) series of operational polar satellites. Cloud systems and troughs are detected using retrievals of cloud top pressure (CTP) and temperature of the lower stratosphere (TLS). Cloud systems have a typical size of a few hundred kilometres with a larger occurrence between March and October. The largest cloud systems occur preferentially in May and October and downstream of a midlatitude upper level trough. Finally, severe precipitation events over the Alpine region are associated to a warm TLS anomaly upstream the cloud system, showing once more the impact of the upper levels on the weather over the area

    Two case studies of severe storms in the Mediterranean using AMSU

    Get PDF
    International audienceMediterranean storms and their associated upper level features are diagnosed here using Advanced Microwave Sounding Unit (AMSU) observations. AMSU-A channel 8 is used to identify upper-level intrusions of stratospheric air, which are often present upstream of heavy precipitating areas, while a combination of AMSU-B channels 3 and 5 is chosen to discriminate moderate to heavily precipitating areas. This precipitation detection method provides results that are in good agreement with TRMM rainfall product and independent ground-based precipitation data. These tools allow us to follow the concomitant evolution of two severe rainfall events in the Mediterranean region and associated upper-level features

    Warm Rain in Southern West Africa: A Case Study at Savè

    Get PDF
    International audienceA warm-rain episode over southern West Africa is analyzed using unprecedented X-band radar observations from Savè, Benin and a Large-Eddy Simulation (LES) over a 240 × 240 km 2 domain. While warm rain contributes to 1% of the total rainfall in the LES, its spatial extent accounts for 24% of the area covered by rainfall. Almost all the warm-rain cells tracked in the observation and the LES have a size between 2 and 10 km and a lifetime varying from 5 to 60 min. During the nighttime, warm-rain cells are caused by the dissipation of large deep-convection systems while during the daytime they are formed by the boundary-layer thermals. The vertical extension of the warm-rain cells is limited by vertical wind shear at their top. In the simulation, their top is 1.6 km higher with respect to the radar observations due to the large-scale environment given by wrong initial conditions. This study shows the challenge of simulating warm rain in southern West Africa, a key phenomenon during the little dry season

    Interaction d'un cyclone tropical avec une onde de Rossby planétaire

    Get PDF
    La migration d'un cyclone tropical aux moyennes latitudes est un problème récurrent pour les modèles de prévision du temps. En particulier, l'interaction entre un cyclone tropical et une onde de Rossby planétaire réduit la prévisibilité en aval. Une simulation numérique avec le modèle atmosphérique Méso-NH reproduit cette interaction d'échelle grâce à sa résolution kilométrique étendue à une domaine semi-hémisphérique. Cette résolution élevée permet pour la première fois de décrire explicitement les phénomènes fortement diabatiques associés à la convection du cyclone

    A numerical study of tropical cross-tropopause transport by convective overshoots during the TROCCINOX golden day

    Get PDF
    International audienceObservations obtained during the Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX) golden day have revealed the presence of ice particles up to 410 K (18.2 km) 2 km above the local tropopause. The case is investigated using a three-dimensional quadruply nested non-hydrostatic simulation and Meteosat Second Generation (MSG) observations. The simulation fairly well reproduces the measurements along the flight track. A reasonable agreement with MSG observations is also achieved: the 10.8-µm brightness temperature (BT) minimum of 187 K is reproduced (a value 6 K colder than the environmental cold-point temperature) as well as the positive BT difference between the 6.2- and 10.8-µm bands, an overshoot signature. The simulation produces several overshooting plumes up to 410 K yielding an upward transport of water vapour of a few tons per second across the tropical tropopause. The estimated mass flux agree with those derived from over tracer budgets indicating that convection transport mass across the tropopause

    Fennec dust forecast intercomparison over the Sahara in June 2011

    Get PDF
    International audienceIn the framework of the Fennec international programme , a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynam-ics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing con-vection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the AĂŻr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only

    Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables

    Get PDF
    Besides their strong contribution to weather forecast improvement through data assimilation, thermal infrared sounders onboard polar-orbiting platforms are now playing a key role for monitoring atmospheric composition changes. The Infrared Atmospheric Sounding Interferometer (IASI) instrument developed by the French space agency (CNES) and launched by Eumetsat onboard the Metop satellite series is providing essential inputs for weather forecasting and pollution/climate monitoring owing to its smart combination of large horizontal swath, good spectral resolution and high radiometric performance. EUMETSAT is currently preparing the next polar-orbiting program (EPS-SG) with the Metop-SG satellite series that should be launched around 2020. In this framework, CNES is studying the concept of a new instrument, the IASI-New Generation (IASI-NG), characterized by an improvement of both spectral and radiometric characteristics as compared to IASI, with three objectives: (i) continuity of the IASI/Metop series; (ii) improvement of vertical resolution; (iii) improvement of the accuracy and detection threshold for atmospheric and surface components. In this paper, we show that an improvement of spectral resolution and radiometric noise fulfill these objectives by leading to (i) a better vertical coverage in the lower part of the troposphere, thanks to the increase in spectral resolution; (ii) an increase in the accuracy of the retrieval of several thermodynamic, climate and chemistry variables, thanks to the improved signal-to-noise ratio as well as less interferences between the signatures of the absorbing species in the measured radiances. The detection limit of several atmospheric species is also improved. We conclude that IASI-NG has the potential for strongly benefiting the numerical weather prediction, chemistry and climate communities now connected through the European GMES/Copernicus initiative

    Key lessons from the DACCIWA project for operational meteorological services

    Get PDF
    This document describes the conclusions of the EU-funded project Dynamics- Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) directly relevant to operational meteorological services. DACCIWA produced the most comprehensive observational dataset of the atmosphere over densely populated southern West Africa to date and used this dataset to foster our understanding of atmospheric processes, and to evaluate dynamical models and satellite data. With this document DACCIWA aims to help improve atmospheric predictions across time-scales, which are important for the development of greater resilience of the West African population to hazardous weather and climate change
    • …
    corecore