16 research outputs found

    Human Muscle Satellite Cells as Targets of Chikungunya Virus Infection

    Get PDF
    BACKGROUND: Chikungunya (CHIK) virus is a mosquito-transmitted alphavirus that causes in humans an acute infection characterised by fever, polyarthralgia, head-ache, and myalgia. Since 2005, the emergence of CHIK virus was associated with an unprecedented magnitude outbreak of CHIK disease in the Indian Ocean. Clinically, this outbreak was characterized by invalidating poly-arthralgia, with myalgia being reported in 97.7% of cases. Since the cellular targets of CHIK virus in humans are unknown, we studied the pathogenic events and targets of CHIK infection in skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistology on muscle biopsies from two CHIK virus-infected patients with myositic syndrome showed that viral antigens were found exclusively inside skeletal muscle progenitor cells (designed as satelllite cells), and not in muscle fibers. To evaluate the ability of CHIK virus to replicate in human satellite cells, we assessed virus infection on primary human muscle cells; viral growth was observed in CHIK virus-infected satellite cells with a cytopathic effect, whereas myotubes were essentially refractory to infection. CONCLUSIONS/SIGNIFICANCE: This report provides new insights into CHIK virus pathogenesis, since it is the first to identify a cellular target of CHIK virus in humans and to report a selective infection of muscle satellite cells by a viral agent in humans

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Manifestations oto-rhino-laryngologiques et principales manifestations cutanées de la tuberculose (à propos d'un cas)

    No full text
    LYON1-BU Santé (693882101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Hémophilie acquise (à propos de deux cas réunionnais)

    No full text
    STRASBOURG-Medecine (674822101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Identification of infiltrating cells by immunocytochemistry.

    No full text
    <p>Muscle sections from patient#1 (A to E)) or patient#2 (F to J) werre processed as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000527#s2" target="_blank">material and methods</a> for immunocytochemistry (immunoperoxydase detection) for the following antigens: CD56 (mouse monoclonal antibody; Dako; A,E); CD8 (mouse monoclonal antibody; Dako; B,G); CD20 (mouse monoclonal antibody; Dako; C,H); CD3 (Neomarker; D,I); CD68 (mouse monoclonal antibody; Dako; E,J). In patient#1 (A to E), the few infiltrating cells were mostly detected as immunoreactive for CD68 and CD3. In patient#2, the massive infiltrates were mainly composed of CD68 and CD3 immunoreactive cells. Counterstain: henatoxylin-eosin. Immunoreactive cells (red-brown color) are indicated by arrows, except in I and J (too numerous). Magnification: ×170.</p

    Infection of cultured human muscle satellite cells by CHIK virus.

    No full text
    <p>Human muscle satellite cells were isolated from the quadriceps (surgical wasting)as previously described <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000527#pone.0000527-Decary1" target="_blank">[12]</a>; They were grown on coverslips and, once differentiated into mytubes or not, infected with two different CHIK virus isolates<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000527#pone.0000527-Schuffenecker1" target="_blank">[8]</a> (isolates 05-115 and 06-049) or vehicle alone. For infection experiments, muscle cells (satellites and myotubes) were exposed for 2 h. at 37°C in medium containing 1% FCS to about 1 to 10 pfu/cell of CHIK virus isolates 06-049 and 05-115 . Cultures were kept for 24, 36, 48, and 72 h. (according to experiments) in Ham's F-10 medium supplemented with 2% fetal calf serum. Immunocytochemical analysis was performed as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000527#pone-0000527-g002" target="_blank">Fig. 2</a>, both by indirect immunofluorescence or immunoperoxydase, after acetone fixation. A: Detection by immunofluorescence of CHIK virus antigens on satellite cells grown for 24 h. after CHIK virus infection (m.o.i. 10). HMAF anti-CHIK virus #1; (magnification:×250). B: Detection by immunofluorescence of CHIKV antigens on satellite cells grown for 24 h. after CHIK virus infection (m.o.i. 10), using a monoclonal antibody against alphavirus nucleocapsid<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000527#pone.0000527-GreiserWilke1" target="_blank">[9]</a>. (magnification: ×1000). C: Detection by immunofluorescence of CHIK virus antigens on satellite cells grown for 48 h. after CHIK virus infection (m.o.i. 10). HMAF anti-CHIK virus #1; (magnification: ×400). D: Absence of infection of myotubes, 24 h. after CHIK virus infection (m.o.i. 10), using HMAF anti-CHIK virus as primary antibody. (magnification: ×200). E and F: Detection by immunoperoxydase of CHIK virus antigens on satellite cells (from two different donors) grown for 36 h. after CHIK virus infection (m.o.i. 10). HMAF anti-CHIK virus #1; (magnification: ×200(E), ×400(F)). G: viral yielding of satellite cells from donor #1 at 24 and 72 h. post-infection by CHIK virus. Analysis of viral yielding was performed by plaque titration on cultured mosquitoe cells as previously described<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000527#pone.0000527-Schuffenecker1" target="_blank">[8]</a> and is expressed as UFF/mL.</p

    Immunocytochemical detection of CHIK virus antigens in a section of the muscle biopsy from patients #1 and #2.

    No full text
    <p>Detection of CHIK virus antigens was performed on paraffin embedded sections (indirect immunofluorescence and immunoperoxydase) A–D: Detection of CHIK virus in muscle biopsy sections from patient #1 (immunoperoxydase) (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000527#pone-0000527-g001" target="_blank">Fig 1A</a>: AEC as substrate; Fig. B,C,D: DAB as substrate). Immunoreactivity is detected on fusiform curved shaped cells located at the periphery of the myotubes, either as multiple cells per microscopic field (A,D), or as single cell per field (B,C). Some immunoreactive cells (arrows) were detected at the periphery of muscle fibers with central nuclei (C, arrowhead). E–F: Detection of CHIK virus in muscle biopsy sections from patient #1 (E) and #2 (F) using the immunofluorescence technique. Whereas the muscle biopsy of patient #1 numerous cells exhibited immunoreactivity (E), at the periphery of myotubes, as assessed by the (immunoperoxydase technique), very rare immunoreactive cells could be detected in sections of the muscle biopsy from patient #2 (F). G: West Nile virus (IS-98-ST1 srtrain) used as the primary antibody (muscle section from patient#1); no staining was observed; similar results were obtained with sera against yellow fever virus, or dengue type-1 virus (data not shown). G,H: sections from a non-infected patient (G) or from a HTLV-1-infected patient with myositic syndrome<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000527#pone.0000527-Ozden1" target="_blank">[11]</a> (H) used as controls; no significant immunoreactivity detected. I: double labeling by immunofluorescence of CHIK virus antigens (green staining; HMAFs anti CHIK virus #1) and laminin (red staining; rabbit anti-laminin polyclonal antibody). Note the CHIK virus immunoreactive cells are located beneath the basal lamina. (magnification: ×300(A,C,D,E,F); ×400(B); ×420 (I); ×100 (G,H)).</p
    corecore