124 research outputs found

    Stakeholder Engagement in HIV Cure Research: Lessons Learned from Other HIV Interventions and the Way Forward

    Get PDF
    Clinical and basic science advances have raised considerable hope for achieving an HIV cure by accelerating research. This research is dominated primarily by issues about the nature and design of current and future clinical trials. Stakeholder engagement for HIV cure remains in its early stages. Our analysis examines timing and mechanisms of historical stakeholder engagement in other HIV research areas for HIV-uninfected individuals [vaccine development and pre-exposure prophylaxis (PrEP)], and HIV-infected individuals (treatment as prevention, prevention of mother-to-child transmission, and treatment of acute HIV infection) and articulate a plan for HIV cure stakeholder engagement. The experience from HIV vaccine development shows that early engagement of stakeholders helped manage expectations, mitigating the failure of several vaccine trials, while paving the way for subsequent trials. The relatively late engagement of HIV stakeholders in PrEP research may partly explain some of the implementation challenges. The treatment-related stakeholder engagement was strong and community-led from the onset and helped translation from research to implementation. We outline five steps to initiate and sustain stakeholder engagement in HIV cure research and conclude that stakeholder engagement represents a key investment in which stakeholders mutually agree to share knowledge, benefits, and risk of failure. Effective stakeholder engagement prevents misconceptions. As HIV cure research advances from early trials involving subjects with generally favorable prognosis to studies involving greater risk and uncertainty, success may depend on early and deliberate engagement of stakeholders

    State transitions across the Strep A disease spectrum: scoping review and evidence gaps.

    Get PDF
    The spectrum of diseases caused by Streptococcus pyogenes (Strep A) ranges from superficial to serious life-threatening invasive infections. We conducted a scoping review of published articles between 1980 and 2021 to synthesize evidence of state transitions across the Strep A disease spectrum. We identified 175 articles reporting 262 distinct observations of Strep A disease state transitions. Among the included articles, the transition from an invasive or toxin-mediated disease state to another disease state (i.e., to recurrent ARF, RHD or death) was described 115 times (43.9% of all included transition pairs) while the transition to and from locally invasive category was the lowest (n = 7; 0.02%). Transitions from well to any other state was most frequently reported (49%) whereas a relatively higher number of studies (n = 71) reported transition from invasive disease to death. Transitions from any disease state to locally invasive, Strep A pharyngitis to invasive disease, and chronic kidney disease to death were lacking. Transitions related to severe invasive diseases were more frequently reported than superficial ones. Most evidence originated from high-income countries and there is a critical need for new studies in low- and middle-income countries to infer the state transitions across the Strep A disease spectrum in these high-burden settings

    The potential global cost-effectiveness of prospective Strep A vaccines and associated implementation efforts.

    Get PDF
    Group A Streptococcus causes a wide range of diseases from relatively mild infections including pharyngitis to more severe illnesses such as invasive diseases and rheumatic heart disease (RHD). Our aim is to estimate the cost-effectiveness of a hypothetical Strep A vaccine on multiple disease manifestations at the global-level. Cost-effectiveness analyses were carried out by building on the potential epidemiological impact of vaccines that align with the WHO's Preferred Product Characteristics for Strep A vaccines. Maximum vaccination costs for a cost-effective vaccination strategy were estimated at the thresholds of 1XGDP per capita and health opportunity costs. The maximum cost per fully vaccinated person for Strep A vaccination to be cost-effective was 385385-489 in high-income countries, 213213-312 in upper-income-income countries, 7474-132 in lower-middle-income countries, and 3737-69 in low-income countries for routine vaccination at birth and 5 years of age respectively. While the threshold costs are sensitive to vaccine characteristics such as efficacy, and waning immunity, a cost-effective Strep A vaccine will lower morbidity and mortality burden in all income settings

    Comparative safety of mRNA COVID-19 vaccines to influenza vaccines: A pharmacovigilance analysis using WHO international database.

    Get PDF
    Funder: New faculty research seed money grant of Yonsei University College of Medicine for 2021 (2021-32-0049).Two messenger RNA (mRNA) vaccines developed by Pfizer-BioNTech and Moderna are being rolled out. Despite the high volume of emerging evidence regarding adverse events (AEs) associated with the COVID-19 mRNA vaccines, previous studies have thus far been largely based on the comparison between vaccinated and unvaccinated control, possibly highlighting the AE risks with COVID-19 mRNA vaccination. Comparing the safety profile of mRNA vaccinated individuals with otherwise vaccinated individuals would enable a more relevant assessment for the safety of mRNA vaccination. We designed a comparative safety study between 18 755 and 27 895 individuals who reported to VigiBase for adverse events following immunization (AEFI) with mRNA COVID-19 and influenza vaccines, respectively, from January 1, 2020, to January 17, 2021. We employed disproportionality analysis to rapidly detect relevant safety signals and compared comparative risks of a diverse span of AEFIs for the vaccines. The safety profile of novel mRNA vaccines was divergent from that of influenza vaccines. The overall pattern suggested that systematic reactions like chill, myalgia, fatigue were more noticeable with the mRNA COVID-19 vaccine, while injection site reactogenicity events were more prevalent with the influenza vaccine. Compared to the influenza vaccine, mRNA COVID-19 vaccines demonstrated a significantly higher risk for a few manageable cardiovascular complications, such as hypertensive crisis (adjusted reporting odds ratio [ROR], 12.72; 95% confidence interval [CI], 2.47-65.54), and supraventricular tachycardia (adjusted ROR, 7.94; 95% CI, 2.62-24.00), but lower risk of neurological complications such as syncope, neuralgia, loss of consciousness, Guillain-Barre syndrome, gait disturbance, visual impairment, and dyskinesia. This study has not identified significant safety concerns regarding mRNA vaccination in real-world settings. The overall safety profile patterned a lower risk of serious AEFI following mRNA vaccines compared to influenza vaccines

    A Phase I Double Blind, Placebo-Controlled, Randomized Study of a Multigenic HIV-1 Adenovirus Subtype 35 Vector Vaccine in Healthy Uninfected Adults

    Get PDF
    <div><h3>Background</h3><p>We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults.</p> <h3>Methods</h3><p>Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions) or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively) within one of four dosage groups: Ad35-GRIN/ENV 2×10<sup>9</sup> (A), 2×10<sup>10</sup> (B), 2×10<sup>11</sup> (C), or Ad35-GRIN 1×10<sup>10</sup> (D) viral particles.</p> <h3>Results</h3><p>No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A–D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC) per 10<sup>6</sup> PBMC to any antigen was 78–139 across Groups A–C and 158–174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A–C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination.</p> <h3>Conclusion/Significance</h3><p>Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination. T-cell responses were broad and polyfunctional.</p> <h3>Trial Registration</h3><p>ClinicalTrials.gov <a href="http://clinicaltrials.gov/ct2/results?term=NCT00851383">NCT00851383</a></p> </div

    The full value of vaccine assessments concept - current opportunities and recommendations

    Get PDF
    For vaccine development and adoption decisions, the ‘Full Value of Vaccine Assessment’ (FVVA) framework has been proposed by the WHO to expand the range of evidence available to support the prioritization of candidate vaccines for investment and eventual uptake by low- and middle-income countries. Recent applications of the FVVA framework have already shown benefits. Building on the success of these applications, we see important new opportunities to maximize the future utility of FVVAs to country and global stakeholders and provide a proof-of-concept for analyses in other areas of disease control and prevention. These opportunities include the following: (1) FVVA producers should aim to create evidence that explicitly meets the needs of multiple key FVVA consumers, (2) the WHO and other key stakeholders should develop standardized methodologies for FVVAs, as well as guidance for how different stakeholders can explicitly reflect their values within the FVVA framework, and (3) the WHO should convene experts to further develop and prioritize the research agenda for outcomes and benefits relevant to the FVVA and elucidate methodological approaches and opportunities for standardization not only for less well-established benefits, but also for any relevant research gaps. We encourage FVVA stakeholders to engage with these opportunities

    Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines

    Get PDF
    Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators

    The Full Value of Vaccine Assessments Concept—Current Opportunities and Recommendations

    Get PDF
    For vaccine development and adoption decisions, the ‘Full Value of Vaccine Assessment’ (FVVA) framework has been proposed by the WHO to expand the range of evidence available to support the prioritization of candidate vaccines for investment and eventual uptake by low- and middle-income countries. Recent applications of the FVVA framework have already shown benefits. Building on the success of these applications, we see important new opportunities to maximize the future utility of FVVAs to country and global stakeholders and provide a proof-of-concept for analyses in other areas of disease control and prevention. These opportunities include the following: (1) FVVA producers should aim to create evidence that explicitly meets the needs of multiple key FVVA consumers, (2) the WHO and other key stakeholders should develop standardized methodologies for FVVAs, as well as guidance for how different stakeholders can explicitly reflect their values within the FVVA framework, and (3) the WHO should convene experts to further develop and prioritize the research agenda for outcomes and benefits relevant to the FVVA and elucidate methodological approaches and opportunities for standardization not only for less well-established benefits, but also for any relevant research gaps. We encourage FVVA stakeholders to engage with these opportunities

    Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines

    Get PDF
    Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators
    corecore