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Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the
development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recom-
binant vectored vaccines may be replication-competent, a key challenge is defining the length of time for
monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic
studies. This time period must be chosen with care and based on considerations of pre-clinical and clin-
ical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting
from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence
from a systematic literature search to narrow down a list of likely potential or known AEFI and establish
the optimal risk window(s); and (3) conducting ‘‘near real-time‘‘ prospective monitoring for unknown
clustering’s of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for
pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected
outcomes. The risk window established by any of these options could be used along with (4) establishing
a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the
infrastructure, human resources and databases available in different countries, the appropriate option
or combination of options can be determined by regulatory agencies and investigators.

� 2018 Published by Elsevier Ltd.
1. Introduction

Immunization against vaccine-preventable diseases (VPD) is a
highly cost-effective public health intervention [1,2]. Traditional
methods of vaccine development against several major human
pathogens may be less than optimal [3]. New biotechnology
approaches are being explored [4] including the development of
(AEFIs)
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recombinant viral vector vaccines using an attenuated virus to
carry and introduce viral DNA into antigen-presenting cells to
induce both humoral and cell-mediated immune responses [5].
‘‘Vector” refers to the virus used as the carrier [6]. Live viral vectors
that express heterologous antigens of the target pathogen in vivo
are being investigated in the development of vaccines against
Human Immunodeficiency Virus type 1 (HIV-1) [7], Plasmodium
falciparum [8], Influenza [9], severe acute respiratory syndrome
coronavirus (SARS-CoV) [10], Ebola virus [11], Hepatitis C virus
[12], Respiratory Syncytial Virus [13], Mycobacterium tuberculosis
[14,15]. Middle East Respiratory Syndrome (MERS) [16,17] Lassa
Fever, Nipah, [17], chikungunya and Zika viruses, etc. [18] (see
Table 1).

Live recombinant viral vectored vaccines include replication-
defective and replication-competent viruses with the possible
association of two different heterologous vectors in prime-boost
regimens. Replication-defective vectors may have a natural host-
restriction such as the avipox vectors [21], or they may have been
attenuated either by serial passage (e.g. yellow fever virus) so that
they are less virulent with decreased replication competency in
humans, e.g., Modified Vaccinia Ankara [22] or by genetic engi-
neering that limits their replication to less than a single cycle
(abortive replication), e.g., in the case of most adenovirus vectors
[23]. The heterologous antigen gene may be of viral, bacterial, par-
asitic, oncologic, or gene therapy-based. The heterologous gene
may comprise sequences coding for a portion of an antigen or an
entire antigen, more than one antigen or heterologous antigen
genes from more than one infectious agent [24,25]. In some cases
protection against the wild-type virus from which the vector is
derived, may also be sought [26].
Table 1
Some viral vector vaccine candidates in different stages of development for use in human

Non-recombinant viruses
no-longer in use in humans

Non-recombinant viruses
in use in humans

Viral vectors
tested in hu

Vaccinia Ad4 (inactivated; live oral) Vaccinia

MVA Ad7 (inactivated; live oral) MVA
Measles NYVAC

Mumps ALVAC
Rubella Fowlpox
MMR Ad3
YFV 17D, 17DD, 17D204, 17D 213 Ad5
Live attenuated VZV Ad35
Influenza virus (inactivated) Ad26

Polio viruses (oral live attenuated;
injectable inactivated)

ChimpAd63

EV71 (inactivated) ChimpAd3
EV71 + CAV16 (inactivated) ChimAdOx1
SA 14-14-2 JE live attenuated Chimerivax

JE)
Adeno Assoc
Sendai
VSV

Ad – Adenovirus.
CMV – Cytomegalovirus.
MVA – Modified Vaccinia Ankara.
LCMV – Lymphocytic choriomeningitis.
NYVAC – Highly attenuated vaccinia virus strain.
hCMV – Human cytomegalovirus.
ALVAC – Canary pox virus.
MMR – Measles, Mumps, and Rubella.
YFV – Yellow Fever virus.
VZV – Varicella zoster virus.
EV – Enterovirus.
CAV – Chicken anaemia virus.
JE – Japanese encephalitis virus.
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The immune response induced by a live recombinant vectored-
vaccine depends on the extent and duration of the replication of
the vector, the immunogenicity of the expressed heterologous
antigen and the antigens of the vector itself. The virulence of live
recombinant viral vaccines cannot be predicted from that of the
viral vector, even when the vector is already attenuated for
humans [25], which emphasizes the need for extensive safety stud-
ies during clinical development before public health use. This will
be even more critical where a vector of non-human virus origin is
utilized. Information on the pathogenicity of the wild-type virus
for humans may be limited or absent. The potential for reversion
to virulence or for recombination or reassortment with circulating
wild-type viruses also must be considered [25,26]. The same viral
vector may not demonstrate an identical safety profile when
expressing different foreign antigens [27] (see Table 2).

As noted earlier, the list of recombinant viral vectors in pre-
clinical and clinical development has expanded and thousands of
subjects have been enrolled in clinical development for the control
of various infectious diseases with recombinant adenovirus and
poxviruses being the most advanced platforms [25]. Given the
large number of candidate vaccines now in clinical studies, the
World Health Organization (WHO) [28,29], the US Food & Drug
Administration (FDA) [30], and the European Medicines Agency
(EMA) [24] have provided various guidance documents to identify
appropriate regulatory pathways, development gaps and critical
data sets to support the advancement of viral vector-based vacci-
nes to licensure.

The Brighton Collaboration formed the Viral Vector Vaccines
Safety Working Group (V3SWG) in October 2008 to help standard-
ize the collection, analysis and dissemination of safety data regard-
s [9,19,20].

already
mans

Viral vectors in preclinical
development

Viruses in preclinical
development

hCMV Reassortment of Lassa
and Mopeia viruses

rLCMV Live attenuated Zika
rhCMV Live attenuated Rift

Valley Fever
Replicating Ad5
Ad55
ChimpAdY25
YFV 17D
Chimeric Zika
Rabies virus
Measles virus
ChAdC7

Kunjin virus

(dengue, Canine distemper virus (CDV)

iated Virus Rhesus rhadinovirus
Newcastle Disease Virus (NDV)
Live attenuated Chinese equine
infectious anemia virus (EIAV)
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Table 2
Safety issues for consideration for candidate viral vector vaccines [24].

(1) Characteristics, pathogenesis, and known adverse events of the wild-type virus, viral vector (before incorporation of the foreign antigen) and final recombinant
viral vector vaccine (data from completed Viral Vector Vaccines Safety Working Group (V3SWG) templates can help to determine this) [64]
(2) Potential for the generation of replication-competent virus from a replication-defective viral vector (measurement of the immune response to an antigen present
in replication-competent viruses but absent in replication-defective viruses might help in identifying such a situation)
(3) Potential for reversion of the viral vector to virulence; this might also occur during manufacture of a batch of vaccine or in vaccine recipients
(4) Potential for recombination or reassortment with other infectious agents that might coincidentally occur in vaccinees around the time of dosing
(5) Incidence of viremia
(6) Assessment of the extent and duration of vaccine shedding and the potential for transmission of the live vectored vaccine to contacts
(7) Potential for vaccination to trigger autoimmune diseases
(8) Potential for integration of genes derived from the vector into the host genome
(9) Consideration of specific adverse events that might reflect the distribution of the vector to specific body sites
(10) Potential for certain adverse reactions to occur only in subsets, e.g. those with a particular genetic predisposition
(11) Potential for increased susceptibility to infection by the agent against which protection is being sought due to high levels of immunity to the vector virus
(12) Potential for nucleotide mutations resulting in changes in the immunogen affecting vaccine effectiveness [65]
(13) Potential of the viral vector to induce tolerance as evidenced by poor vaccine efficacy in clinical trials or epidemiological studies [66]
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ing viral vector vaccines in pre- and post-licensure settings [31].
The V3SWG hopes that by improving our ability to anticipate
safety issues and meaningfully assess and interpret safety data
from clinical trials of new viral vectored-vaccines, this will
enhance safety knowledge as well as public confidence and vaccine
uptake once licensed.

One way to enhance our understanding of vectored-vaccine
safety is to improve surveillance for Adverse Events Following
Immunization (AEFI). Vaccine Associated Adverse Events (VAERS),
sponsored by CDC and the FDA, has been in use since the 1990s
(see below). Robust vaccine safety monitoring has many advan-
tages including the discovery of potentially novel and unantici-
pated adverse events associated with vectored vaccines, the
development and use of safer vaccines and minimization of the risk
of Adverse Events (AE) after vaccination by providing specific rec-
ommendations, including contraindications and precautions for
use [31–35].

As some live recombinant vectored-vaccines may integrate,
one key challenge is defining the length of time for monitoring
potentially related AEFI after receipt of viral vectored-vaccines.
This time period must be chosen with care and based on consid-
erations of clinical trials data and biological plausibility [36]. The
follow-up time must be long enough to include (a) the plausible
period of increased risk (also called ‘‘risk window” or ‘‘risk inter-
val”), and (b) the comparison control ‘‘non-risk” time period for
study designs where this period occurs post- (vs. pre-) risk
window. In some studies of vaccine-associated Guillain Barré
syndrome (GBS), the risk interval included days 1–42 after
vaccination during which vaccine-associated GBS was considered
to be biologically plausible and the control interval was days
43–84 after vaccination. The number of events of each type was
tabulated each week and the number of AE in the post-
vaccination window was compared with the number in the pre-
vaccination window. This case-only self-controlled method (also
referred to as self-controlled case series or SCCS) is commonly
used in influenza vaccine safety studies to eliminate between-
person biases [37]. SCCS is a preferred study design to avoid the
‘‘healthy vaccinee” effect (HVE) commonly associated with pre-
risk control windows. HVE refers to the fact that if an individual
has been ill, recently hospitalized, or otherwise unwell, vaccina-
tion may be deferred by the health care provider, patient or pri-
mary caregiver until the health of the individual improves. This
consideration is especially true for vaccinations in early infancy.
Therefore, a vaccinated individual is more likely to be in a healthy
state immediately before and after their vaccination. Conse-
quently, HVE reduces AE rates in the immediate pre- and post-
vaccination periods, reducing the power to detect AE [38]. Select-
ing a surveillance duration that is too short or too long could
cause a true increase in risk to be missed or obscured by random
Please cite this article as: S. Kochhar, J. L. Excler, K. Bok et al., Defining the interv
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noise. Ideally, this duration should be based on statistical power
considerations (e.g., continued until 90% power is achieved to
detect the minimum absolute excess risk that is important for
public health) and continued until any important risk can be ruled
out. Due to the differences in background rates of specific AESI,
the length of planned surveillance may differ by outcome for the
same vaccine under study [39]. AESI may take time to manifest
and be detected (e.g., the VSV Ebola vaccine that was found in
synovial fluid causing arthritis) [11].

A long duration of monitoring is often challenging in low- and
middle-income countries (LMIC) with limited health infrastruc-
ture, in countries with evolving AEFI monitoring systems with
multiple priorities and even in countries with excellent infrastruc-
ture which are challenged with new diseases and new vaccines
[40,41].
2. Options for defining the length of follow-up

Some of the available options for defining the optimal length of
follow-up for use in clinical trials and epidemiological studies of
new pharmaceutical products, including viral vectored-vaccine
candidates, are mentioned below.

(1) Adapt from current relevant existing guidelines

The Risk Interval Working Group of the Clinical Immunization
Safety Assessment Network (CISA) was formed in September
2010 due to the critical role that correct specification of risk and
control intervals for AEFI play in observational studies of vaccine
safety, and the relative paucity of work done to formally assess
and determine biologically plausible and evidence-based risk
intervals [36]. The group used febrile seizure and acute dissemi-
nated encephalomyelitis as models to provide an in-depth review
of methodological issues related to the selection of risk and control
intervals for consideration in future studies of immunization
safety. As knowledge of the risk profile relative to the time since
immunization for many AEFI is often incomplete, choosing more
than one (e.g., a short and long) biologically plausible risk interval
to evaluate in an active surveillance study may be appropriate.

The 2006 FDA guidance on Gene Therapy Clinical Trials –
Observing Subjects for Delayed Adverse Events [42] currently
explicitly states it does not apply to ‘‘Vaccines used to prevent
infectious diseases even if you use products analogous to those
used for gene therapy.” Nevertheless, its guidance may provide a
starting upper bound of a plausible risk interval(s), which may be
adjusted downwards for a shorter interval(s) with an appropriate
scientific rationale. For example, this guidance recommends a min-
imum 15-year follow-up, with a possibly shorter risk period(s) if
al for monitoring potential adverse events following immunization (AEFIs)
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supporting evidence is available (e.g., duration of in vivo vector
persistence, transgene expression, feasibility etc.).

The 2015 FDA guidance on Considerations for the Design of
Early-Phase Clinical Trials of Cellular and Gene Therapy (CGT)
Products [43], states that a year or more of follow-up is appropri-
ate for subjects in early-phase trials.

One source of relevant guidance more suited for resource-
limited settings comes from maternal immunization trials [44].
The minimum recommended follow-up period for women is
6 months post-delivery or following the early termination of preg-
nancy. The minimum recommended follow-up period for infants is
until 1 year of age.

Guidance [44] also allows for both shorter and longer follow-up
periods with adequate scientific justification. The appropriate
duration of follow-up depends on the results of preclinical studies,
experience with related products, knowledge of the disease pro-
cess, biological characteristics of the vaccine, the vaccine-
targeted disease or an AESI, including outcomes identified in previ-
ous trials, or the characteristics of the vaccine recipient (e.g., nutri-
tional state, underlying diseases such as immune-compromising
condition and other associated co-morbidity conditions), or the
intention to assess early childhood development (in the case of
vaccines for pregnant women) and late-onset outcomes as part of
the Risk Management Plan (which may require follow-up periods
of 5 years or more). These guidelines acknowledge there are signif-
icant logistical challenges with extended follow-up periods, espe-
cially in resource-limited settings [40,44].

In general, long-termmonitoring focuses on subject survival, on
serious adverse events and AESI (that could include hematologic,
immunologic, neurologic, or oncologic AESI). For some purposes,
a telephone call to the subject, rather than a clinic visit, may be suf-
ficient to obtain the necessary follow-up information. In addition,
completion of long-term monitoring usually is not necessary prior
to initiating subsequent trials or submitting a marketing applica-
tion [43]. Nevertheless, long-term monitoring in LMIC utilizing
modern data collection methodology and recipient tracking to
detect AEFI will be needed when a new viral vector vaccine is first
introduced in these LMIC countries. Otherwise, the new vaccine’s
large-scale use may be delayed until such data has been gathered
in other countries/settings with appropriate infrastructure.

(2) Convening a panel of experts to review the evidence from a
systematic literature search to narrow down a list of likely or
known AEFI and establish the optimal risk window(s)

The Delphi technique is well suited for consensus-building and
may be considered for the panel. It utilizes a series of question-
naires delivered using multiple iterations to collect data from a
panel of selected subjects. It provides anonymity to respondents,
a controlled feedback process, and the suitability of a variety of sta-
tistical analysis techniques to interpret the data. Subject selection,
time frames for conducting and completing a study, the possibility
of low response rates, and unintentionally guiding feedback from
the respondent group are areas which should be considered when
designing and implementing a Delphi study [45].

For new viral vectored-vaccine candidates, it would involve
convening a panel of experts with an appropriate understanding
of the biological mechanism of action of the new viral vectored-
vaccine and which AESI it may plausibly cause and the likely onset
time frame for their occurrence. Such an expert panel was recently
convened and was instrumental in developing the Vaccine Safety
Datalink’s (VSD) white paper to prioritize studies of the safety of
routine childhood immunization schedule [46]. Once the specific
AESI(s) and likely risk interval(s) have been pre-specified as
hypothesis, the existing pharmacovigilance and pharmacoepi-
demiological infrastructure designed for pre- and post-marketing
Please cite this article as: S. Kochhar, J. L. Excler, K. Bok et al., Defining the interv
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can be marshaled to detect and if needed, validate these safety
signals.

While this expert-based approach has been widely used histor-
ically, the list of previously unsuspected AE once a pharmaceutical
product is widely used is long [47]. Unlike efficacy and effective-
ness, vaccine safety cannot be measured directly. Human clinical
trials typically are conducted using healthy non-pregnant volun-
teers and the safety assessment is focused on common short-
term pre-specified local and systemic AE (e.g., pain at injection site,
fever). Rare but serious adverse events associated with vaccines or
drugs are often nearly impossible to detect on account of the
selected enrollment and limited follow-up of subjects in pre-
licensure studies and their detection requires conducting post-
marketing monitoring (also called pharmacovigilance) after the
introduction in the general population. The FDA also requires more
diversity in the population studied because the incidence of AEFI
might vary in different populations [48]. Safety of these products
can only be inferred by the relative absence of AESI when the pop-
ulation exposed to the new pharmaceutical product of interest is
sufficiently large, diverse and monitored adequately. Absolute
safety, while understandably desired as a goal, is difficult to assess,
let alone guarantee, especially early in the lifecycle of any new
product.

(3) ‘‘Real-time‘‘ prospective monitoring for unknown clusters of
AEFIs in settings with validated large linked vaccine safety
databases

Traditionally, passive surveillance (also called spontaneous
reporting) systems have served as a relatively affordable first line
source of signals of previously unknown AEFI. The practice of con-
ducting manual individual case reviews is now usually augmented
by implementing computerized data mining algorithms on the
entire MedDRA coded adverse event database to detect patterns
of disproportionate reporting of adverse events [49]. The US FDA
and EMA have mandatory requirements for passive reporting of
AEFI to the Vaccine Adverse Event Reporting System (VAERS)
[47] and EudraVigilance systems [50], respectively. The World
Health Organization (WHO) is helping many LMICs improve their
capacity to monitor AEFI [51], and these efforts could help to
upgrade the capacity to monitor AEFIs over longer follow up peri-
ods (including coding AEFI for ICD (International Classification of
Diseases), MedDRA (Medical Dictionary for Regulatory Activities)
etc. beyond the short follow-up periods currently used.

To help overcome the many methodological limitations of pas-
sive surveillance for AEFI (e.g., under-reporting, biased reporting,
lack of control groups) [52], several high-income countries have
developed active surveillance systems for AEFI for analyses of the
association between a vaccine and one or more pre-specified
adverse health outcomes. For example, the CDC created the Vac-
cine Safety Datalink [53] (VSD) project in 1990 in collaboration
with several managed care organizations. The VSD uses a dis-
tributed data model and de-identified International Classification
of Diseases (ICD) coded data downloaded from the individual’s
electronic health record to track the use of health services by the
members of each participating site. This includes information on
vaccinations (e.g., vaccine type, date of vaccination, and other vac-
cinations given on the same day) and the specific medical illnesses
that have been diagnosed at doctors’ offices, urgent care visits,
emergency department visits, and hospital stays. AEFI need to be
coded accurately to be able to be found in the database. The US
FDA oversees a complementary active safety surveillance system
for vaccines called the Post-Licensure Rapid Immunization Safety
Monitoring (PRISM) program [54]. This consists mostly of insur-
ance claims. The program is attempting to move to healthcare
records and this brings with it new challenges.
al for monitoring potential adverse events following immunization (AEFIs)
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Traditionally, the VSD and the PRISM systems conduct rigorous
vaccine safety studies (e.g., comparing rates of AEFI within risk
intervals to rates in control intervals) to test the hypothesized
questions or concerns raised from the medical literature and
reports to the VAERS. Such VSD studies usually take several years
from inception to completion, however. VSD and PRISM studies,
while population-based and rigorously conducted, have generally
not addressed identification of previously unsuspected possible
adverse reactions [55].

The Rapid Cycle Analysis (RCA) method of the VSD was created
to allow more timely (e.g., weekly) analysis of pre-specified AESI
with pre-specified risk intervals so the public can be informed
quickly of possible risks of newly licensed vaccines or new immu-
nization schedules [56]. The RCA uses dynamic data files, aggrega-
tion of data, and sequential analysis methods (a new signal
detection method that supports continuous or time-period analy-
sis of data as they are collected, adjusting for the multiple statisti-
cal testing). PRISM now is developing RCA capabilities. There are
also reliable registries in countries like Denmark and Sweden that
can do such studies [57].

Excitingly, prospectively scanning for unknown clusters of new
AESI in both clinical trial participants, and if licensed, in vaccines
in routine use in the general population has become a reality. In
the era of ‘‘large data”, the dream has been to develop methods
that allow for ongoing scanning of administrative health records
of pharmaceutical product exposures and medical outcomes for
new safety signals, especially those not previously specified. Given
the large number of statistical tests done, adjustments for multiple
testing are needed to minimize the number of false positive signals
that would otherwise waste valuable time and resources needed
for assessment of true signals. This hope is coming closer to frui-
tion with the development of the just described RCA for pre-
specified AESI [58,59] and TreeScan [60] (https://www.treescan.
org/) for previously unspecified outcomes.

TreeScan is a novel scan statistical method by which the
surveillance can be conducted with a minimum of prior assump-
tions about the group of vaccines that increase risk, and which
adjusts for the multiple testing inherent in the many potential
combinations [61]. TreeScan is free data mining software that
implements the tree-based scan statistic, a data mining method
that simultaneously looks for excess risk in any of a large number
of individual cells in a database as well as in groups of closely
related cells, adjusting for the multiple testing inherent in the large
number of overlapping groups evaluated. It has been developed for
disease surveillance. For pharmacovigilance, it can be used to
simultaneously evaluate thousands of potential adverse events
and groups of adverse events, to determine if any one of them
occur with higher probability among people exposed to a particu-
lar vaccine. For a particular disease outcome (e.g. kidney failure), it
can be used to simultaneously evaluate if it occurs with increased
risk among people exposed any of hundreds of pharmaceutical
drugs or vaccines, or groups of related drugs or vaccines (https://
www.treescan.org/). The TreeScan method allows a wide range of
unsuspected but potentially adverse reactions to be simultane-
ously evaluated and otherwise unknown adverse reactions may
be found. The main disadvantage is that it is not possible to adjust
for all possible confounders. Indeed, no conclusion about causality
should be based on TreeScan analyses alone. In effect, the TreeScan
method serves as a tool for identifying AE that may merit a further
careful pharmaco-epidemiologic investigation [55]. Treescan is
only beginning to be used more widely, so more time is needed
to assess its effectiveness (e.g., AESI with insidious onset have tra-
ditionally been challenging to study in traditional large-linked
databases using methods requiring a prior definition of risk inter-
vals). The use of Treescan will also likely to be limited to settings
with high-quality administrative health (including immunization)
Please cite this article as: S. Kochhar, J. L. Excler, K. Bok et al., Defining the interv
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records initially. For LMICs, this requirement may be more likely
to be met in some urban centers and INDEPTH Network sites.

The risk-interval established by one or more of the above-
mentioned methods can be used with the following option.

(4) AESI registry and case-control studies

In the cancer field, specific cancer disease registries have been
very effective research tools [62]. Case-control studies are particu-
larly suitable for the study of relatively rare diseases with a long
induction period, such as cancer and possible AESI. Since cases in
a case-control are by definition subjects who have already devel-
oped the condition of interest, there is no need to wait for time
to elapse. A similar approach can be taken for safety monitoring
of viral vector vaccine candidates with the establishment of a reg-
istry of cases identified with clinically valid pre-specified AESI and
matched controls found from the hospital or neighborhood to com-
pare for vaccine exposure history. These studies can be multi-
national under a similar protocol. Given the rarity of these AESI,
this is likely feasible only with post-marketing surveillance after
substantial vaccine use has occurred. For settings where high-
quality administrative health records are unlikely to be a reality
in near future, this may be one possible alternative.
3. Conclusion

Live viral vectors that express heterologous antigens of the tar-
get pathogen in vivo are being investigated in the development of
vaccines for numerous infectious diseases, making use of a variety
of viral vectors. Live viral vectored vaccines may be based on
replication-defective as well as replication-competent viruses. As
some live recombinant vectored vaccine may replicate, one key
challenge is defining the length of time for monitoring AEFI after
administration of vectored vaccines in clinical trials and epidemio-
logical studies. This time period must be chosen with care and
based on considerations of clinical trial data and biological plausi-
bility. A long duration of monitoring is often challenging in coun-
tries with poor health infrastructure, in countries with evolving
AEFI monitoring systems with multiple priorities and even in
countries with excellent infrastructure which are challenged with
new diseases and new vaccines [36,40]. Some of the available
options for defining the length of follow-up to be used in studies
of new viral vector vaccine candidates include adapting from cur-
rent relevant regulatory guidelines; convening a panel of experts to
review the evidence from a systematic literature search to narrow
down a list of likely or known AEFI and optimal biologically plausi-
ble risk window(s); conducting ‘‘near-real-time‘‘ prospective mon-
itoring for unknown clustering’s of AEFI in validated large linked
vaccine safety databases (e.g., Vaccine Safety Datalink (VSD),
PRISM, etc.). This includes Rapid Cycle Analysis (RCA) for pre-
specified AESI and TreeScan for previously unsuspected outcomes.
The risk interval established by one of the above-mentioned meth-
ods can be used along with establishing a registry of cases identi-
fied with clinically validated pre-specified AESI to include in case-
control studies. The available infrastructure, human and financial
resources, coded databases in countries and regulatory guidelines
will determine which (one or a combination) of these methods
would be practically feasible. These options might be broadly
applicable to the duration of surveillance for other new pharma-
ceutical products. The risk intervals selected for clinical trials or
epidemiologic studies may not be of the appropriate length to rule
out associations in individual cases. Since our knowledge of the
pathophysiology of many AEFI is incomplete; a longer risk interval
may be required when evaluating an AEFI in an individual. Rare
individuals may have genetic immune defects that result in
al for monitoring potential adverse events following immunization (AEFIs)
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increased susceptibility to vaccine viruses. Mortality rates in vac-
cine recipients with such defects may be high. However, because
of their rarity, they are likely to be discovered only in post-
marketing analyses [63].
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