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Schistosomiasis remains a neglected tropical disease of major public health concern with
high levels of morbidity in various parts of the world. Although considerable efforts in
implementing mass drug administration programs utilizing praziquantel have been
deployed, schistosomiasis is still not contained. A vaccine may therefore be an
essential part of multifaceted prevention control efforts. In the 1990s, a joint United
Nations committee promoting parasite vaccines shortlisted promising candidates
including for schistosomiasis discussed below. After examining the complexity of
immune responses in human hosts infected with schistosomes, we review and discuss
the antigen design and preclinical and clinical development of the four leading vaccine
candidates: Sm-TSP-2 in Phase 1b/2b, Sm14 in Phase 2a/2b, Sm-p80 in Phase 1
preparation, and Sh28GST in Phase 3. Our assessment of currently leading vaccine
candidates revealed some methodological issues that preclude a fair comparison
between candidates and the rationale to advance in clinical development. These
include (1) variability in animal models - in particular non-human primate studies - and
predictive values of each for protection in humans; (2) lack of consensus on the
assessment of parasitological and immunological parameters; (3) absence of reliable
surrogate markers of protection; (4) lack of well-designed parasitological and
immunological natural history studies in the context of mass drug administration with
praziquantel. The controlled human infection model - while promising and unique -
requires validation against efficacy outcomes in endemic settings. Further research is
also needed on the impact of advanced adjuvants targeting specific parts of the innate
immune system that may induce potent, protective and durable immune responses with
the ultimate goal of achieving meaningful worm reduction.
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INTRODUCTION

Disease Burden
Schistosomes are digenea trematodes within the clade of
platyhelminths. Human pathogenic species include Schistosoma
haematobium (Sh) and S. mansoni (Sm) occurring throughout
Africa and the Middle East. The former is also found in
Mediterranean Europe and the latter also in South America.
S. japonicum (Sj) and S. mekongi occur in Central, East and
South-East Asia (1–3). Schistosomiasis is a neglected tropical
disease (4) that is estimated to affect more than 240 million
people (5, 6). The 2016 Global Burden of Disease study suggested
that of all diseases assessed, schistosomiasis revealed the most
pronounced reduction in age-standardized years lived with
disability (YLD) between 2006 and 2016. Low infection
intensities with minimal clinical symptoms likely underestimate
the true burden of infected individuals leading to a hypothetical
correction of one egg-negative case for each egg-positive case and
an adjusted 400 and 600 million infected people globally (7, 8).
Initial infections occur in endemic settings with typical
transmission patterns among young children two years of age
with increasing infection intensities during the following 10 years
of life, peaking among young adolescents and decreasing during
adulthood. An estimated 60-80% schoolchildren and 20-40%
adults have persistent infections (9, 10). Sh-HIV co-infections,
especially among women suffering from genital mucosal
inflammation and ulceration, and Sm-Plasmodium spp. co-
infections are considered important contributors to the HIV and
malaria epidemics in Africa (11–14). Genital schistosomiasis
caused by Sh is a common gynecologic condition affecting an
estimated 40 million African women (15).

Parasite Pathogenicity
Definitive mammalian hosts acquire infection via skin
penetration during contact with fresh water infested with
infectious larval cercariae released from intermediate species-
specific snail hosts. Cercariae transform to juvenile schistosomes
or schistosomula before entering the vascular system, where they
migrate to their venous destination to mature and mate with
their sexual counterparts (16). Adult worms spend much of their
lives in copula and are capable of existing in immunocompetent
hosts for decades. The adult worms migrate to the mesenteric
venules of the intestine, i.e. Sm and Sj, or the venous plexus of the
bladder, i.e. Sh, where females residing in the gynaecophoric
canal of males produce hundreds of eggs daily that are
subsequently fertilized by males. Ova released via feces for Sm
and Sj or urine for Sh continue their lifecycle upon hatching in
fresh water as miracidia and multiplication by asexual replication
in snail hosts prior to transmission to definitive hosts.

Clinical disease in humans can be divided into acute and
chronic manifestations. Acute schistosomiasis is seen among
individuals without previous parasitic exposure and presents as
debilitating febrile illness at six to eight weeks post infection.
Chronic schistosomiasis is caused by inflammatory,
immunopathological host responses and organ damage due to
bleeding, scarring, and formation of granulomata and fibrosis
around eggs retained in tissues. Schistosomiasis clinical features
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are parasite species-dependent with intestinal, hepatic and
urinary pathology including malignancies, e.g., squamous cell
carcinomas in the bladder or sandy patches in the female genital
areas. It may affect other organs such as the central nervous
system through ectopic ova deposition, and lead to cognitive and
physical impairment - especially among children (7, 17, 18).

Schistosomes co-exist in immunocompetent hosts for decades
since they adapt, modulate, and evade cellular and humoral
immune defense mechanisms though with parasite species-
specific differences (9, 19). Their pivotal component for
switching from a young immune-sensitive to an adult
immune-refractory state is the tegument. It is a syncytial
matrix of fused cells overlaid by a lipoidal membranous bilayer
on the parasite outer surface, and essential for metabolic
processes, movement, and external interchange (16, 20–22).
Tegumental mechanisms to evade host defense components
include biophysical membrane adaptations with rapid
turnover, and alterations or masking of surface antigens and
immunomodulatory molecules (21).
Host Immunity
Upon infection in humans, the immune system is confronted
with multiple moieties exposed during the various lifecycle
stages. Intact adult worms are impervious to immune attacks,
whereas the migrating skin- and especially lung-stage
schistosomula are targets of the cellular and humoral host
defense (9, 10, 23). Generally, hosts react in the following
general manner against schistosomal infections: (i) development
of age-dependent partial protective immunity to reinfection from
repeated adult worm death that releases immunologically active
molecules that induce adaptive immunity and (ii) initiation of
immunopathogenic and/or immunoregulatory mechanism
against parasitic antigens released from tissue-trapped ova (7,
17, 24, 25). In endemic settings, immune responses and disease
severity are influenced by multiple host factors, e.g., infection
intensity, cumulative treatment history, co-infection status,
genetics/genetic pre-disposition, and in utero transplacental and
postnatal oral antigen sensitization resulting in phenotypically
similar maternal and fetal responses (18, 26). Interestingly,
newborns of mothers with schistosomiasis have a pre-existing
anti-inflammatory T-helper 2 (Th2) response, IgM and/or IgE
anti-schistosome antibodies, and cord blood mononuclear cells
proliferating with anti-egg antibodies that induce altered
regulated responses to infections in these children (10, 18, 26).

The acute disease phase is characterized by pro-inflammatory
CD4+ T-helper 1 (Th1) or CD4+ Th1/T-helper 17 (Th17)
responses against migrating schistosomula with elevated
production of tumor necrosis factor alpha (TNF-a) and
interferon gamma (IFN-g) triggering innate phagocytic
antigen-presenting and epithelial cells to release larvicidal
molecules and other cytokines (18, 23, 27–30). For instance,
interleukin (IL)-17-activated neutrophils release neutrophilic
extracellular traps (NETs) to sequester schistosomula in the
bloodstream; IL-10-regulated IL-12 is essential for Th1-cell
differentiation (23, 31). Regulatory CD4+ T-cells (Treg)
provide an essential regulatory arm to stabilize the immune
August 2021 | Volume 2 | Article 719369
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response and limit immunopathology. Tregs and cytokine decoy
receptors serve to limit the extent of immune-mediated
pathology during schistosomiasis (32). However, in Sh-infected
individuals Treg proportions rise significantly with increasing
infection in younger age groups. In contrast, Treg were
negatively correlated to infection intensity in older age groups
(32, 33). The chronic disease stage is defined by anti-
inflammatory CD4+ Th2 responses against egg epitopes with
antigen-presenting cells, members of the B7 superfamily, and
cytokines to downregulate the pro-inflammatory response (18).
IL-10, which has a role in T-cell regulation with IL-4, prevents
damages from Th1/Th2-mediated pathologies, and polarizes
Th1/Th2 responses to enhance resistance to pathogens, and
mitigate disease severity, thus improving host survival (27,
28, 34).

Extreme polarization is detrimental; the “happy valley”
hypothesis assumes best anti-parasite protection at either the
Th1- or the Th2-pole, and least protection at a well-mixed Th1/
Th2 balance where parasites seem “happiest” (27). IL-4 activates
phagocytic antigen-presenting and cytokine-producing
leukocytes and interacts with other cells presenting antigens in
endemic populations impacting vaccine efficacy and disease
susceptibility. Whether persistent schistosomiasis affects HIV
susceptibility or both agents interact is uncertain though viral
replication is higher when Th2-cells are present (18). Though
Th2-cells stimulate natural but only partial non-sterile resistance
to reinfection, they contribute long-term to disease chronicity
with granulomatous-fibrotic formations mediated by IL-4, IL-5
and IL-13, and STAT6 (signal transducer and activator of
transcription 6) pathways (32).

The B-cell contribution to parasite clearance and prevention
of disease severity is not well understood. IgE and IgA antibodies
confer protective immunity with resistance to reinfection, and
larval killing through antibody-dependent cell-mediated
cytotoxicity (ADCC) along with blood effector cells (27,
35–37). However, IgE antibodies develop slowly due to long-
lived schistosomes and antigen-exposure occurring only during
parasitic death. In contrast, IgG4, IgG2 and IgM against parasitic
carbohydrate epitopes are associated with susceptibility to
reinfection and disease severity along with mediators, e.g.,
IFN-g, Treg and IL-10, thus blocking protective antibodies (10,
35–37). Whether resistance to schistosomiasis is due to a
balanced mix of antibodies or to the presence or absence of a
particular antibody is unclear (35, 36). Vaccine-induced
hypersensitivity due to pre-existing IgE from past infections
are seen in other worms, e.g., for the Brazilian APS-based
hookworm vaccine in its Phase I trial (38, 39).

Prevention and Treatment
Preventive measures are multifaceted and include avoiding
contact with infectious water , improved access to
uncontaminated water, improved hygiene and sanitation,
elimination of intermediate freshwater snail hosts, and
provision of health education to high-risk populations,
especially in settings with dam construction, irrigation systems,
and internally/externally displaced persons (refugee camps) (40,
41). The drug of choice remains praziquantel (PZQ) (42). It is
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efficacious against adult worms by changing irreversibly the
tegumental permeability and stability but works poorly against
schistosome larva (9). Its full efficacy is impacted by host factors,
e.g., immune defense, infection intensity, exposure history, gut
microbiota, and physiological disposition and bioavailability,
and parasite factors, e.g., localization in bloodstream leading to
damage or recovery (9, 19, 20, 24, 42–45). Anti-worm rather than
anti-egg antibodies are reported to increase after PZQ treatment.
Initially, IgG4 leads to higher susceptibility to re-infection due to
IgE blocking but a decrease in susceptibility with regular
repeated treatment is seen due to decreased IgG4 levels (46,
47). The immunoregulatory role of PZQ is driven by the
promotion of CD4+ T-cells and differentiation of Type 1
regulatory cells to maintain immune hemostasis and effector
cytokine secretion - in particular IL-4, IL-5 and IL-10 (10, 45).
However, since PZQ cannot prevent reinfection, regular repeated
large-scale mass drug administration (MDA) is needed in
endemic settings, which requires large infrastructure and
financial investment. About 105 million people received
preventive treatment in 2019, though at least 237 million
people were in need (1, 44). The ability of PZQ to cure adult
worm infection and reduce egg excretion is important, but
concern over the potential of emerging resistance has arisen
because of its exclusive and extensive use over decades (7–9, 39,
42, 48, 49).
ADVANCED VACCINE CANDIDATES

Given the limitations of MDA alone, a hypothesis is that
complementing a comprehensive approach with a safe and
effective vaccine would more likely be successful in
dramatically reducing the incidence of schistosomiasis (7).
Current research builds largely on the radiation-attenuated
cercarial vaccine considered as gold standard in terms of
immunological response in experimental models, but difficult
to be translated for human use. Single percutaneous
administration yields 60-70% protection against subsequent
challenge infection starting about two weeks post-
immunization and persisting for about 15 weeks in various
animal species and for several Schistosoma species (31, 50).

Preferred product characteristics for a schistosomiasis vaccine
have been proposed (7, 8). Since schistosomes do not replicate in
their definitive host, a prophylactic vaccine against
schistosomiasis should ultimately result in reduction of disease
manifestations as well as blocking transmission, thus reducing
force of transmission (7, 8). The goal is non-sterilizing immunity
with a long-term decline in tissue eggs and egg excretion -
preferably through killing of female worms - while preserving
concomitant natural immunity induced by non-pathogenic male
worms (8, 51–53). A candidate vaccine should be co-
administrable with PZQ in MDA programs and with existing
national vaccination programs. In the 1990s, a joint UNICEF,
UNDP, World Bank, WHO-TDR program promoting vaccines
against parasitic diseases shortlisted some promising candidates;
only few have progressed to pre-clinical and clinical stages: Sm-
TSP-2 which is in Phase 1b/2b, Sm14 in Phase 2a/2b, Sm-p80
August 2021 | Volume 2 | Article 719369
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which is being submitted to the US FDA for Phase 1 clinical trial
approval, and Sh28GST which has completed Phase 3 trials (51,
54, 55). We present findings from the literature and clinical trials
registered at https://clinicaltrials.gov. For each of the four leading
vaccine candidates, we discuss the antigen, and preclinical and
clinical studies as applicable. Details on antigens, formulations,
study designs and findings are summarized in Supplementary
Tables S1–S4.

S. mansoni Tetraspanin: Sm-TSP-2/Sm-
TSP-2/Al®
The characteristics of tetraspanin (TSP) are summarized in
Figure 1 (56–61); detailed pre-clinical and clinical
investigations of Sm-TSP-2 are presented in Supplementary
Table S1.

TSPs are scaffold proteins regulating the trafficking, functioning
of membrane proteins, cell-cell interactions, and tegumental
formation; they share a topology of an intracellular N- and C-
terminal loop, and extracellular loops EC1 and EC2 with species-
specific phylogenetic differences stimulating differential protection
(56–60). TSP’s species-specific genetic polymorphism - especially
within the EC2 external loop - and subclass diversity impact its host
range and suitability as a target of protective immunity in addition
to cross-species protection (62). Gene sequences of the EC2-domain
from Kenyan Sm male worms revealed the greatest degree of
polymorphism found in Schistosoma spp (58). The sub-
tegumental Sm-TSP-2 of newly transformed schistosomula is an
easy target of protective immunity and uniquely recognized by IgG1
and IgG3 antibodies from individuals with acquired resistance to
schistosomiasis compared to chronically-infected subjects. Krautz-
Peterson et al. showed that a limited number of dominant
conformational epitopes on five major tegumental surface
membrane proteins, i.e., Sm-TSP-2, Sm23, Sm29, SmLy6B and
SmLy6F, are primary targets of serum antibodies from mice, rats
and humans infected with Sm. However, neither infecting
schistosomula nor mature adult schistosomes are substantively
impacted by the robust circulating antibodies specific to these
antigens (62). By contrast, Th1 responses to these antigens can be
harmful to schistosomes and are responsible for the reduction in
parasite load following vaccination (63, 64).

Screening sera of individuals from endemic areas of the state
of Minas Gerais, Brazil revealed higher anti-TSP-2 IgG1 and
IgG3 antibodies among putatively resistant individuals, though
no anti-TSP-1 antibodies were found. However, among
chronically-infected individuals, all IgG subclasses and IgE
were detected against soluble egg and worm antigens (65).
Injection of mice with schistosomula after electroporation with
Sm-TSP-1 and Sm-TSP-2 dsRNAs resulted in 61% and 83%
reductions in the numbers of parasites recovered from the
mesenteric veins four weeks later when compared to dsRNA-
treated controls. These results imply that TSPs play important
structural roles impacting tegument development, maturation, or
stability (61).

TSP orthologs in Sh and Sj with >90% sequence homology
indicate potential cross-species protection (66, 67). Protection
based on subclass diversity with differential expression of
Frontiers in Tropical Diseases | www.frontiersin.org 4
transcripts across the parasitic lifecycle stages and higher
expression in female than male worms was investigated within
Sj-TSP-2. Immunizing mice with Sj-TSP-2 subclass C or
recombinant Sj-TSP-2 subclasses A-G resulted in no protection
(56, 66); however, administering Sj-TSP-2 subclass E or D
adjuvanted with or without complete Freund’s adjuvant (CFA)
or incomplete Freund’s adjuvant (IFA) resulted in reductions of
54% hepatic and 69% fecal eggs, and 53% hepatic and 52% fecal
eggs, respectively (56, 66, 68). Strong total IgG (IgG1 and IgG2a)
antibody responses with weak IgA, IgE and IgM levels were
detected, indicating an overall marked Th1/Th2 response (65).

Variations in the Sj-TSP-2 EC2 sequence may alter the affinity
or avidity to hosts’ immune responses and stimulate different
levels of protective efficacy. Experiments in mice with Sm-TSP-2
encoding EC2 or Sm-TSP-2/5B chimera (hookworm vaccine
candidate) co-administered with CpG/alum reduced worm
burden by 25-27% and 54-58%, and liver eggs by 20-27% and
48-56%, respectively, and induced higher titers of total IgG, IgG1
and IgG2 antibodies in the Sm-TSP-2/5B group (65, 69).
Analysis of sera of chronically-infected individuals from Sm
and hookworm endemic Minas Gerais, Brazil, did not reveal
Sm-TSP-2-specific (and Na-APR-1/5B) IgE antibodies despite
high IgE titers to crude schistosome soluble egg antigen.

Additional pre-clinical experiments combining Sm-TSP-2
with Sm29 adjuvanted with CFA/ICA conferred increased
protective efficacy (63). Similar to the aforementioned studies,
individuals from endemic areas in Brazil showed higher IgG
against Sm-TSP-2/Sm29 in naturally-resistant individuals,
suggesting that a multivalent vaccine might be better
recognized by individuals with a resistant phenotype (63).
Murine experiments with Sm-TSP-2/Sm29 vaccination resulted
in higher reductions of worm burden and granulomata, with
elicitation of total IgG, IgG1 and IgG2a antibodies with IFN-g
and TNFa cytokine production across groups, and a Th1
response with increasing antibody titers following additional
booster immunizations (63). Mice immunized with DNA-
based Sm29, Sm-TSP-2, Sm29 N/C-terminus/Sm-TSP-2
chimera or Sm29+Sm-TSP-2 had worm reductions of 17-22%,
22%, 31-32% or 24-32% and decreases in hepatic granuloma of
28%, 30%, 37% and 26% respectively (70). High total IgG to N/C-
terminus/SmTSP-2 chimera and Sm29+rSm-TSP-2 along with
high production of IFN-g and TNF-a -indicative of a Th1-biased
profile - were detected following cercarial challenge. DNA-based
immunization resulted in a lower protection rate compared to
recombinant protein formulations. A chimeric Sm multi-epitope
(Sm14, Sm21.7, Sm23, Sm29, Smp80, Smcb, and Sm-tsp-2),
subunit vaccine formulated with a novel TLR4 agonist induced
humoral and cellular immune responses suggestive of its
potential as a prophylactic or therapeutic vaccine (71). Taken
together, these findings justified taking Sm-TSP-2 (made in
Pichia pastoris) forward in clinical trials.

Sm-TSP-2/Alhydrogel (Sm-TSP-2/Al®) with or without
Glucopyranosyl Lipid Adjuvant in an Aqueous Formulation
(“GLA-AF”) was first tested in a Phase 1 dose-escalation trial
among healthy adults from a Sm non-endemic area
(NCT02337855) (49, 72). The vaccine was well tolerated with
August 2021 | Volume 2 | Article 719369
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only mild local and systemic reactogenicity and no vaccine-
related serious adverse events reported. The proportion of
vaccinees responding 14 days post vaccination was 30%, 50%,
and 89% for 10µg, 30µg and 100µg antigen doses, respectively,
suggesting a dose-dependent response. IgG antibodies peaked at
day 127 post vaccination in the 30mg and 100mg cohorts, but
were not detectable in the 10mg cohort, and decreased by day 293
across cohorts. Magnitude and longevity of responses to Sm-
TSP-2/Al® with GLA/AF (AP10-701) were assessed in a
subsequent dose-escalation Phase Ib trial in healthy adults
from a Sm endemic Brazilian setting (NCT03110757), but the
findings are yet to be published (73). Safety, immunogenicity,
efficacy and cross-species protection against Sh of Sm-TSP-2/
Al® with AP10-701 are being investigated in Phase I and Phase
IIb trials among healthy adults from a Sm endemic setting in
Uganda (NCT03910972) (74).

S. mansoni Fatty Acid-Binding
Protein: Sm14
The characteristics of FABP are provided in Figure 1 (75–79);
pre-clinical and clinical investigations of Sm14 are in
Supplementary Table S2.

FABPs are expressed in all parasitic life cycle stages. Cytoplasmic
FABPs allow schistosomes to acquire fatty acids and cholesterol
from the host due to a lack of schistosome oxygen-dependent
synthetic pathways essential for membrane formation, protein
anchoring, maturation, and egg production (75–79). Sm FABP
shares 91%, 45%, 39% and 49% sequence homology with FABPs of
Frontiers in Tropical Diseases | www.frontiersin.org 5
Sj, Echinococcus granulosus, Fasciola hepatica, and Clonorchis
sinensis, respectively; phylogenetic proximity may suggest
potential for cross-species protection (80–83).

Sm14-vaccinated mice exhibited a 41% reduction in worms
compared to unvaccinated controls; immunizing outbred
rodents with Sm14 formulated with or without CFA reduced
Sm worms by 66%-89% and Fasciola hepatica metacercariae by
100% (84–87). Administering adjuvanted Sm14 to ungulates
resulted in high cross-species protection against Fasciola
hepatica parasites and liver damage due to T-lymphocyte
infiltration, with strong IgM and IgG responses (88–90)
suggesting Sm14 as a vaccine candidate with cross-species
potential (91, 92). Goats immunized with synthetic Sm14
adjuvanted with RIBI/Al(OH)3 developed cross-species cellular
responses and strong humoral protection also against Fasciola
hepatica with declines in liver and gallbladder worms of 46%,
and a reduction of gross liver damage of 55% due to low
infiltration of CD2+, CD4+ and CD8+ T lymphocytes (87–90).
Early murine experiments showed worm reductions ranging
from 20-67%, and strong Th1-predominant responses without
impacting granulomatous-fibrotic reactions (92–100). Further
rodents immunized with Sm14 with CFA or pRSET-His-rSm14,
showed 72% protection and prevention of parasite maturation
and hepatic tissue damage by 100% (79, 84–87, 101).

Naturally resistant individuals in endemic areas demonstrate
a Th1 immune response to Sm14. Assessment of cell-mediated
responses among subjects from endemic areas in Brazil using
synthetic multi-epitope peptides of Sm14 (1-18, 32-48, and 53-
FIGURE 1 | Antigen characteristics of advanced schistosomiasis vaccine candidates which progressed to pre-clinical and clinical development (details in
Supplementary Tables S1–S4). Sm, Schistosoma mansoni; Sh, Schistosoma haematobium; TSP, tetraspanin; GST, glutathione S-transferase; cGMP, current
Good Manufacturing Practice; AP10-701, glucopyranosyl lipid A (aqueous formulation); GLA-SE, glucopyranosyl lipid A in stable emulsion (TLR4 agonist); CpG-ODN,
oligodeoxynucleotides with unmethylated CpG dinucleotides (TLR9 agonist).
August 2021 | Volume 2 | Article 719369
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69) indicated that Sm14 epitopes 32-48 and 53-69 were
recognized by the majority of individuals tested and
preferentially by resistant patients compared to non-infected,
infected and susceptible subjects. A marked Th1 immune
response profile corresponded with decreased granulomatous
fibrotic pathology (99, 102–105). Mixtures of synthetic peptides
of Sm14 and paramyosin with CFA/IFA induced a Th1/Th2
immune response with noticeable reductions of worms,
intestinal eggs, and hepatic granuloma suggesting that multi-
epitope-based vaccines increase the frequency of responders in
genetically distinct populations. Multi-epitope and multi-valent
(Sm14 and Sm29) adjuvanted vaccine candidates elicited Th2-
dominant protection and a decline in granulomatous-fibrotic
pathologies in different animal models (102–105). Sm14 antigens
from different expression systems, e.g., Mycobacterium spp.,
Clostridium spp., and Salmonella spp., were of moderate
efficacy (101, 106–110). Subsequent optimization of expression
and fusion systems and adjuvant formulations elicited strong
total IgG and IgG subclass responses with induction of cells
positive for IFN-g, TNF-a and other cytokines associated with
reductions in worms, hepatic granuloma, and egg counts (92–
101, 106–110). Similarly, bivalent constructs (Sm14/Sm28 GST
expressed in Escherichia coli, Sm14/Sm29, and FSm14/29
adjuvanted with poly(I:C), administered in murine models
resulted in declines in adult worms, hepatic and intestinal eggs,
and hepatic granuloma size and frequency, and elicitation of Th1
immune responses (87, 103–106, 110).

Sm14 expressed in Pichia pastoris and adjuvanted with GLA
in a stable emulsion (GLA-SE) advanced into a safety and
immunogenicity Phase 1 clinical trial among healthy adults
from a non-endemic Brazilian area (NCT01154049) (111–113).
The vaccine given intramuscularly at weeks 0, 4 and 8 was safe
and well tolerated, and no vaccine-related serious adverse event
was reported. Sm14-specific total IgG and IgG1-4, were induced
from day 30 until day 90 together with Th-1 and Th-2 cytokines;
no IgE were detected suggestive of reduced risk of vaccine-
induced hypersensitivity. Safety and immunogenicity of Sm14/
GLA-SE were assessed in a Phase 2a trial among adults with
history of Sm and/or Sh infections from the hyperendemic
Senegal River Basin, Senegal (114). Adults received one dose of
PZQ three weeks prior to vaccination (NCT03041766) (113,
114). Preliminary results suggest that Sm14/GLA-SE was safe
and well tolerated and resulted in 92% seroconversion after the
second booster dose. Sm14-specific antibody titers were detected
up to 12 months after initial immunization (113). A Phase 2b 3-
arm self-contained open-label controlled randomized trial is
ongoing among healthy and Sm- and/or Sh-infected
schoolchildren from the Senegal River Basin receiving a single
dose of PZQ prior vaccination to further assess the safety and
immunogenicity of Sm14/GLA-SE (NCT03799510) (113, 115).

S. mansoni Large-Subunit Calpain:
Sm-p80/SchistoShield®

The characteristics of calpain are summarized in Figure 1 (116–
125); detailed pre-clinical results using Sm-p80 are in
Supplementary Table S3.
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Calpain is a proteolytic protein for membranous biosynthesis
consisting of a catalytic and a regulatory subunit. The large
subunit, Sm-p80, changes to a membrane-bound status through
calcium-activated auto-proteolysis by the small subunit (124,
125). It shows no immunological cross-reactivity with calpains in
vertebrates; Sm-p80 is expressed in all schistosome lifecycle
stages though with a 2.5-fold higher expression in females
compared to male adult worms, and plays a pivotal role in
membranous biosynthesis and turnover (116–123). Sm-p80
induced cross-species protection against Sh with reductions of
48% worms, and 66% and 63% hepatic and intestine eggs in
Syrian hamsters, respectively, and reductions of 25% worms, and
64% urinary bladder, 40% fecal and 53% urinary eggs in Papio
anubis baboons with robust immune responses indicative of
balanced Th1/Th17 immunity though slightly biased to a Th2
response (125, 126). Cross-species protection was also shown
against Sj using GLA-SE-adjuvanted Sm-p80, and against Sh
using a Sm-p80-VR1020 DNA prime and CpG-ODN-
adjuvanted protein boost approach with reductions of 47% of
worms and 5% of hepatic eggs in mice, and reductions of 27%
worms but no effects on hepatic, intestinal and urinary eggs in
hamsters, respectively, and a balanced Th1/Th2 immune
response (122, 126).

Sm-p80 expressed in baculovirus and adjuvanted with CFA
resulted in 67% worm reduction in immunized mice challenged
with Sm (124). Neither subcutaneous nor intranasal delivery of
recombinant vaccinia virus-expressed protein-based Sm-p80
decreased adult worms, while DNA immunization via gene
gun provided 60% protection with a Th1-based immune
response against cercarial challenge (127). Sm-p80 DNA
administered intramuscularly with IL-2 or IL-12 to mice at
weeks 0, 4 and 8 followed by cercarial challenge resulted in
57% and 45% decreases in adult worms, respectively. Total IgG,
IgG2a and IgG2b antibodies were enhanced in the presence of
either interleukin indicative of a Th1 response, but no IgA, IgE
and IgM antibodies were detected, which is a hallmark of Sm-p80
(52). The same DNA construct co-administered with the
granulocyte-macrophage colony-stimulating factor (GM-CSF)
or IL-4 conferred similar worm reductions of 44% and 42%
compared to IL-2 or IL-12, respectively; Sm-p80-DNA given
with GM-CSF or IL-4 resulted in the augmentation of both Th1
and Th2 responses, but no IgA, IgE and IgM antibodies (116).
Subcutaneous immunization of mice with Sm-p80 DNA alone or
adjuvanted with GM-CSF, IL-4, IL-12, or IL-2 followed by Sm
cercarial challenge confirmed protective effects with decreased
worm burden as in earlier experiments. Mouse splenocytes
showed high in vitro proliferation indicative of a protective
Th1 immune response (128). Increasing the frequency of DNA
boosts resulted in 59% and 84% decrease of worm and egg
burdens, respectively, with distinct total IgG, IgG1, IgG2a,
IgG2b, IgG3 titers mediated by IFN-g and IL-2 even without
added adjuvants (129).

Vaccinating mice in a Sm-p80 DNA prime and protein boost
versus Sm-p80 alone co-administered with Resiquimod (R848,
TLR7/8 agonist) resulted in 49% and 50% worm as well as 30%
and 16% egg reductions, respectively. In contrast, the same
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prime-boost regimen versus recombinant protein alone co-
administered with CpG-ODN conferred decreases of 57% and
70% in adult worms, and 71% (65% anti-fecundity) and 75%
(77% anti-fecundity) reduction in egg counts, respectively (30).
The use of R848 resulted in high titers of IgM, IgA, total IgG and
IgG1, IgG2a, IgG2b, and IgG3 together with pro-inflammatory
cytokines in addition to IL-15 and IL-16 indicating a Th1 type
immune response (130) - similar to the immune response seen in
the CpG-ODN experiment though titers were higher with Sm-
p80 alone. Both approaches elicited strong mixed Th1/Th17 and
Th2 biased cellular responses (30).

Papio anubis baboons which develop a schistosomiasis
syndrome similar to humans and are natural hosts for various
Schistosoma species were vaccinated intramuscularly with 500mg
Sm-p80 DNA alone or IL-2-adjuvanted followed by three boosts
at 4-week intervals (8, 131). Immunized animals exhibited a Th1
response with 21-34% complement-dependent killing of
schistosomula. A proof-of-concept study in non-human
primates assessed the safety and prophylactic anti-fecundity
potential of non-adjuvanted DNA immunization followed by a
subcutaneous challenge with 1,000 Sm cercariae. The vaccine was
well tolerated and showed 38% reduction in worms (30% males
and 14% females), 50% reduction of paired worms, 6% reduction
in immature worms, and 32% reduction hepatic and intestinal
eggs, and a mixed Th1/Th2 response with Th1 dominance (118,
132–134).

Sm-p80 DNA cloned in vector VR1020 administered to mice
resulted in a decrease in 47% adult worm and high total IgG and
IgG2b titers following cercarial challenge indicative of a Th1/
Th17 immune response (118). Baboons immunized with Sm-
p80-VR1020 showed similar reductions in adult worms of 46%,
and of hepatic and intestinal eggs of 28%, and a mixed Th1/Th2
response (133). The co-administration of Sm-p80-VR1020 or
Sm-p80 protein with alum in mice saw reductions of 61% and
55% adult worms and 23% and 21% eggs counts, respectively,
coupled with a robust Th1/Th2 response with strong IgM, total
IgG, IgG1, IgG2 and IgG3 levels, and upregulation of pro-/anti-
inflammatory cytokines affecting Th17 and Treg functions (134).
Immunization of non-human primates with Sm-p80-VR1020
followed by two boosts 4 weeks apart with Sm-p80 protein
adjuvanted with CpG-ODN or R848 resulted in adult worm
declines of 47% and 38% versus 58% and 52% with protein alone,
respectively. Total IgG, IgG1, IgG2 and IgA antibodies coupled
with IFN-g and IL-2 expression in peripheral blood mononuclear
cells, splenocytes and lymph node cells, but no IgG3 and IgG4
were elicited in either group, indicative of a mixed/balanced Th1/
Th17 and Th2 response (39).

Human correlate studies revealed Sm-p80 reactivity with
immunoglobulin G in human serum samples from
schistosome-infected individuals. In addition, a complete lack
of prevailing Sm-p80–specific immunoglobulin E in high-risk or
infected populations was observed, thus minimizing the risk of
hypersensitivity reaction following vaccination with Sm-p80 in
humans (39). This study provided the proof-of-concept to move
Sm-p80 forward into further translational development leading
to human clinical trials.
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In order to dissect the role(s) of antibodies in Sm-p80
mediated protection, pooled sera from mice immunized with
Sm-p80-DNA or purified IgG from baboons immunized with
Sm-p80-DNA were transferred intravenously into naïve mice,
respectively, prior to challenge with cercariae. Passive transfer of
sera or purified IgG antibodies from mice and baboons
vaccinated with Sm-p80 DNA into naïve mice with subsequent
cercarial challenge resulted in decreases in adult worms, hepatic
eggs and egg hatching from tissues, suggesting that antibodies
play a significant role in Sm-p80-mediated protection (135). Sera
from immunized baboons were able to kill a significant
proportion of schistosomula in a complement-dependent
manner (135, 136). Naïve versus antibody gene locus knockout
mice immunized with Sm-p80 with CpG-ODN showed
reductions of 63% and 18% adult worms, and 47% and 36%
eggs, respectively; this decrease in protection demonstrates that
antibodies in addition to complement are an essential
component -but not the only one - of Sm-p80-mediated
protection. Immunization of wild-type and complement-3-
deficient mice with Sm-p80 with CpG-ODN showed that
complement plays a minimal protective role in vitro though it
may impact the development of egg-induced pathology. Worms
were reduced by 53% and 34%, respectively, while 15 to 25-fold
lower levels of trapped hepatic and intestinal tissue eggs were
seen in complement-3-deficient than wild-type mice (119).
ADCC protection using lung lavage and lung cells was assessed
in mice vaccinated with Sm-p80 with CpG-ODN (137). High
levels of larvicidal killing and cellular attachments of
macrophages, lymphocytes, and endothelial cells activated by
cytokines were found suggesting that at least in mice lung cells
play pivotal roles in Sm-p80-mediated immunity to
schistosomiasis. Sm-p80-specific IgG antibodies were detected
up to 60 weeks in mice and 5-8 years in baboons, including
maternal co-protection through placental transfer, colostrum or
lactation after administration of Sm-p80 with GLA-SE and Sm-
p80-DNA with IL-2, respectively (137, 138).

Immunization of chronically infected baboons with Sm-p80
adjuvanted with GLA-SE resulted in declines of 36% adult
worms, 54% tissue eggs, and 33% fecal eggs; immunizing
baboons with a Sm-p80-VR1020 DNA prime and Sm-p80
protein boost adjuvanted with alum or CpG-ODN led to
reductions of 10% worms, 10% tissue eggs and 15% fecal eggs,
and of 23% worms, 57% tissue eggs and 13% fecal eggs,
respectively (139). Total IgG and IgM were detected in all
groups, but the expression of IgA and IgG subclasses, and
cytokines differed; balanced Th1/Th17 and weak Th2 profiles
were potent to kill established worms, and to reduce egg
retention and expulsion (133, 139, 140). Immunofluorescence
studies on Sm-p80 show it is highly expressed on eggs while still
in the uterus of females, which may suggest that eggs may be
damaged by Sm-p80-specific antibodies through tegument
permeation. Correspondingly, infected baboons immunized
with Sm-p80 with GLA-SE had a 68% reduction in liver eggs
with 86% decline in the hatching rate (141). Following
vaccination of baboons with Sm-p80 with GLA-SE, egg levels
were reduced in liver (91%), small intestine (87%), and large
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intestine (91%). Female adult worms and egg hatching into
miracidia decreased by 93% and 82%, respectively (123, 126).
The retention of some non-pathogenic male worms of stunted
growth and shorter life spans due to lack of pairing in the absence
of female worms may be of benefit in recurrent boosting of the
natural immunity and resistance to schistosomiasis. Livers had
soft, smooth texture with fewer, smaller granulomas and necrosis
surrounding trapped eggs compared to control animals (123).

Sm-p80-based vaccine efficacy was evaluated in a baboon
model of infection and disease. The efficacy study aimed to
replicate the scenario of implementing Sm-p80 in endemic
settings subsequent to drug treatment of infected individuals.
Sm-p80-based vaccination reduced hepatic- (38%), small
intestine- (72.2%) and large intestine-egg burdens (49.4%). Sm-
p80 also reduced hatching rates by 60.4%, 48.6%, and 82.3%,
respectively (142). Observed declines in egg maturation and
hatching rates were supported by immunofluorescence and
confocal microscopy revealing unique differences in Sm-p80
expression in worms of both sexes and matured eggs.
Immunizing baboons resulted in 64.5% reduction of the urine
schistosome circulating anodic antigen, a parameter that reflects
worm numbers and health status of infected hosts. Total IgG titers
were unchanged during trickle infection but increased following
PZQ treatment and vaccination. Transcriptomes of peripheral
blood mononuclear cells, and secondary lymphoid tissues among
vaccinated baboons exhibited induction, activation and
proliferation of innate and adaptive humoral and cellular
elements, including memory immune responses (142). Phase 1
clinical trials are proceeding now in US adults (first-in-human)
followed by dose-escalation among African adults with future age-
de-escalation to children with SchistoShield® (Sm-p80 expressed
in E. coli and adjuvanted using GLA-SE).

S. haematobium Glutathione
S-Transferase: Sh28GST (Bilharvax®)
The characteristics of GST are summarized in Figure 1 (143–
151); detailed pre-clinical and clinical studies of the candidate are
provided in Supplementary Table S4.

Comparative analyses on sera from exposed individuals
before and after PZQ treatment known for altering
schistosome-specific immune reactions qualitatively and
quantitatively were performed to identify and characterize
immunogenic Sh proteins (152). These studies show that GST
is involved in detoxification and antioxidant pathways (144,
151). The protein is expressed on the tegument and sub-
tegument of adult schistosomes of many species and plays a
pivotal role in modulating the host’s immune response during
infection. Inhibition of its enzymatic activities through
neutralizing antibodies following immunization may be
detrimental to the parasite. As key player of host-parasite
interactions 28GST is an attractive vaccine candidate (143–
151). It is a dimer of two very similar monomers, each having
N- and C-terminal domains (144). Comparisons of Sh28GST
and Sb28GST show that 75% of all residues are fully conserved
among Sm, Sj, Sh, and S. bovis (Sb), suggesting a close
evolutionary relationship (145, 151).
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Initial research revealed that the passive transfer of 28GST-
specific IgM antibodies with blocking effect of the enzymatic
activity of Sm28GST in rodents resulted in worm decline,
impairments in the female fecundity, and reduced egg viability
related to laying, hatching and tissue deposition, suggesting that
blocking effects of enzyme activities are detrimental to parasites
(153). Interestingly, though PZQ has no pharmacological effect
on the functional enzymatic activities of Sh28GST, its binding to
Sj26GST results in a steric inhibition and altered immune
responses and transport for large ligands. Whether
upregulation or mutagenesis of parasitic GST could confer
resistance to PZQ is debatable but may suggest the need for
additional anti-schistosomal drugs (144, 151, 152, 154, 155).

Early pre-clinical experiments of Sh-infected Papio anubis
baboons and Erythrocebus patas monkeys immunized with
Sm28GST followed by homologous Sm or heterologous Sh
challenge, and cattle vaccinated with Sm28GST with or
without muramyl-di-peptide (MDP) or Sb28GST with or
without MDP followed by Sh and S. mattheei challenge,
showed heterologous immunity and protection post challenge
with anti-fecundity and improved organ pathology. This suggests
Sm28GST may have potential as polyvalent cross-protective
vaccine candidate (145–148, 156, 157). In mice, Sh28GST
elicited stronger IgA, IgG and IgE antibody titers compared to
Sh-infected mice (158–160). Similar immune responses with
predominant IgA, IgG and IgE antibodies were detected
among infected humans from highly endemic Senegalese and
Kenyan settings. IgE was positively correlated with older, lightly-
infected subjects and negatively correlated with younger, highly-
infected Zimbabweans (158–164). Naturally Sh-exposed
Zimbabwean children from an endemic area demonstrated the
highest and lowest Th2-cytokines among children aged 4-9 and
10-12 years of age, respectively, prior to PZQ treatment, and the
highest Th1-/Th2-/Th17-cytokine levels among children aged 4-
9 years six weeks post PZQ treatment (146).

Experiments using different expression vectors, e.g.,
Bordetella pertussis, Mycobacterium bovis, Saccharomyces
cerevisiae, and Salmonella Typhimurium, and administration
routes (intranasal, intraperitoneal and oral), among rodent and
monkey models induced mixed Th1/Th2 responses with dose-
dependent IgG1, IgG2a, IgG2b and IgA antibodies, and ADCC
(148, 149, 164–167). Wild-caught Erythrocebus patas monkeys
immunized with Sh28GST with CFA/IFA but not Sh28GST with
Bacillus Calmette-Guérin adjuvant developed IgG and IgA titers
with homogeneous anti-pathology processes, such as acute
eosinic and chronic sclerotic inflammations, compared to
heterogeneous processes in the alternate cohort (148). Dose-
escalation toxicological assessments of Sh28GST adjuvanted with
alum induced transient local inflammatory reactions and no
clinical, anatomical or physiological modifications among
rodents (168).

An initial Phase 1a trial assessed the safety, tolerability and
immunogenicity of 100mg Sh28GST expressed in Saccharomyces
cerevisiae and adjuvanted with alum followed by two booster
doses on day 28 and 150 in healthy adult Caucasians 18-30 years
of age (NCT01512277). A dose-escalation open-label trial of
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300mg Sh28GST in alum with a single booster dose 4 weeks later
was performed (168, 169). The vaccine was safe and well
tolerated with only mild vaccine-related adverse events. Th2-
type Sh28GST antibodies were induced by additional booster
doses in a dose-independent manner. IgG1, IgG2 and IgG3
subclass antibodies, weak IgA and IgG4 titers, and no IgE
antibodies, as well as a Th-1/Th-2 cytokine expression
response, were detected. Inhibition of GST enzymatic activity
was seen among all vaccine recipients and enhanced with
additional doses coupled with the production of IgG1 and
IgG3 subclass antibodies (143, 146, 168, 170). A subsequent
Phase 1b trial in non-infected children 6-10 years of age (115)
from schistosomiasis endemic Saint-Louis, Senegal, confirmed
the vaccine safety and tolerability and the induction of high
antibody titers (115, 143, 170). Bilharvax® in combination with
PZQ treatment was also safe in infected adults and children
(171). These preliminary clinical findings led to the
implementation of an efficacy trial.

A randomized, placebo-controlled Phase 3 trial investigated the
safety, efficacy, long-term recurrences of clinical and parasitological
manifestations, and immunogenicity of Bilharvax® among Sh-
infected school children 6-9 years of age in the Saint-Louis region
of the Senegal River Basin, with high endemicity (>60%) (171, 172).
Subsequent to clearance of ongoing schistosomiasis infection with
two doses of PZQ prior and post immunization at week 44, children
were randomized to receive three subcutaneous injections of either
Bilharvax® or Alhydrogel® alone serving as control group at weeks
0, 4, and 8 followed by a booster dose at week 52, one year after the
first injection (168, 171, 172). The primary endpoint was efficacy,
evaluated as delay of recurrence of urinary schistosomiasis, and
defined by a microhematuria associated with at least one living Sh
egg from baseline to week 152. Bilharvax® combined with PZQ was
safe and well tolerated. No disease recurrence was observed among
vaccinees during a median follow-up period of 76 and 92 weeks and
76 weeks among the vaccine and the control groups, respectively.
However, at week 152, at least one recurrence of urinary
schistosomiasis without differences in morbidity and
parasitological manifestations assessed by ultrasonography was
experienced by 86% and 85% of recipients in each group.
Sh28GST-specific total IgG, IgG1, IgG2, IgG4 and modest IgE
antibodies were elevated in the vaccine group, but unexpectedly
IgG3 and IgA titers were absent in both groups. The immune
response generated inhibited the enzymatic activity of Sh28GST
preventing schistosomiasis pathology; ≥70% of sera in the vaccine
group compared to 8% in controls had antibodies. The absence of
specific IgG3 antibodies in the vaccine group, and the low IgA and
IgE levels might represent a key factor involved in the lack of efficacy
of the vaccine in this trial. Indeed, previous studies have shown
elevated Sh28GST IgG3, IgE, and IgA antibodies compared to IgG1
in association with acquired immunity against reinfection to urinary
schistosomiasis (173). Immuno-epidemiological studies in human
populations indicate that the presence of IgG3 antibodies correlates
with naturally acquired protective immunity against schistosomiasis
(174). A Phase 1 clinical trial conducted in healthy subjects (168)
revealed that Sh28GST induced IgG1 and high IgG3 titers, an effect
that was associated previously with reduced egg production and
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decreased urinary tract pathology among Sh-infected individuals.
Future trials should thus reassess Bilharvax® in the absence of PZQ,
and preferably in non-infected younger children utilizing another
pro-Th1 adjuvant.
METHODOLOGICAL CONSIDERATIONS

Animal Models and Predictive Value of
Protection in Humans
Among the experiments presented within the scope of this review,
there are notable differences between the animal models, and
parasitological and immunological assessments used - in particular
for non-human primate challenge studies. These differences render
comparisons between vaccine candidates and experimental
outcomes difficult. For example, the Sh28GST candidate failed to
confer efficacy in Phase 3 trials in humans while protection was
demonstrated in the Erythrocebus patas monkey model, which in
this case showed no positive predictive value. How would the Papio
anubis baboons challenge model used for Sm-p80 compare to the
Erythrocebus patas monkey model in terms of species susceptibility,
cercarial challenge method, and immunogenicity assessment?

With the exception of a few antigens, the prophylactic efficacy
of the majority of schistosome vaccine candidates has been
evaluated only in the murine model which, inherently, appears
to have an apparent ceiling of 40-50% protection (175). It is
therefore advisable that while designing immunization regimens
for clinical trials, data generated in the murine model should be
used with caution. Baboons may serve as a useful bridge between
mouse and human studies (8).

It is also noteworthy that two out of three vaccines candidates
that progressed to advanced clinical development were not tested in
non-human primate challenge models. The Sm14 vaccine entering
into Phase 2 has not been tested in non-human primates so far. It is
not clear whether Sm14 will undergo a challenge model experiment
before entering an efficacy trial. Sm-TSP-2 vaccine was also not
tested in non-human primates and it does not appear that this is
being considered in preparation of a Phase 2b trial in Uganda.

Parasitological Assessments
Across the evaluation of different schistosomiasis vaccines, there
does not seem to be a general consensus about parameters to
assess and the methods of measurement for non-human primate
challenge experiments and efficacy trials in humans.

Parasitological post-challenge outcomes as primary efficacy
endpoints are also difficult to interpret. In efficacy trials, it is
assumed that egg output and hatching percentage would be a
surrogate of worm burden to assess efficacy endpoints. The
determination of worm burden is only possible in non-human
primate models after portal perfusion. However, fecal egg output
and/or circulating antigen levels are surrogate markers in
humans. The sensitivity of these surrogates, the correlation
between worm burden and egg output, and the validation of
these surrogates in humans need further research.

In addition, the duration of protection is unknown since all
baboons in the reported trials were sacrificed. In a challenge
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study in baboons vaccinated with Sm-p80, post challenge there
are still ~7% of active female worms producing eggs with little
pathogenicity (123). It remains unclear how this would change
after longer periods of observation or repeated exposure.

Immune Response Assessment
and PZQ Impact
Across the evaluation of the different vaccine candidates, there
does not seem to be consensus about the assessment of the
following parameters: immune responses, including which
variables to measure, and time points; in addition, consensus is
needed on the method of measurement for non-human primate
challenge experiments and efficacy trials in humans in terms of
assay validation, standardization of reagents, and repository.
As highlighted in the Krautz-Peterson’s study (62), using
conformationally-native immunogens may be important when
preparing antibodies for detection of schistosome tegumental
antigens under natural conditions, such as for in situ localization
or live worm staining.

PZQ may modulate transient and long-term immunological
effects, which in turn may augment or antagonize vaccine-induced
immune responses and skew towards a more pro-inflammatory
response (47, 146, 176). In Zhang’s challenge study (123), the Sm-
p80 vaccine exhibited potent prophylactic efficacy against
transmission of Sm infection and was associated with significantly
less egg-induced pathology compared to unvaccinated control
animals. Specifically, the vaccine resulted in a 93.5% reduction
female worms and impacted significantly the major clinical
manifestations of hepatic and intestinal schistosomiasis by reducing
the tissue egg-load by 90%. A 35-fold decrease in fecal egg excretion
in vaccinated animals combined with an 81.5% reduction of egg
hatching into the snail-infective stage (miracidia) demonstrates the
parasite transmission-blocking potential of the vaccine. Higher Sm-
p80 expression in female worms and Sm-p80-specific antibodies in
vaccinated baboons appear to play an important role in vaccine-
mediated protection. The immune correlates of protection are,
however, not known (potential Th1 response with IFN-g, IgG1 and
IgG3)?. It must be noted that Ahmad’s work in non-human primates
describes a mixed Th1-Th2 response without IgG3 antibodies. Little
was learnt on immune correlates of protection however. Cell-
mediated immune responses were not assessed.

Vaccination neither induces IgG4 nor a pro-inflammatory
response after PZQ treatment and cercarial challenge. However,
the reduction of worms and eggs after PZQ before challenge was
not assessed (142). A clearer picture of these parasitological and
immunological parameters might be generated from the
comparison of the following groups: group 1 chronic infection,
group 2 chronic infection receiving PZQ, group 3 chronic
infection receiving PZQ with subsequent cercarial challenge,
and group 4 chronic infection receiving PZQ followed by Sm-
p80 vaccination and cercarial challenge.

To better understand field conditions of prior infection with
schistosomes and post treatment with PZQ, baboons underwent
Sm cercariae trickle infections over five weeks allowing the
development of chronic disease and were treated subsequently
with PZQ. After initial infection and during chronic disease,
there was an increase in NK and NKT cells while the CD4:CD8
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T-cell ratio inverted from 2:1 to 1:2.5. The cytokine expression in
peripheral blood mononuclear cells after trickle infections was
polarized more towards a Th2 response with a gradual increase
in the Th1 profile in the chronic disease stage. Following PZQ
treatment, immune cell populations reverted back towards naïve
pre-treatment levels with the exception of an increase in B cells;
however, expression of Th1, Th2, and Th17 cytokines was
significantly increased. The implications of such findings for
vaccine studies in baboons and humans remain unclear (177).

Natural history studies in areas targeted for efficacy trials
seem essential, in particular in the context of PZQ MDA. Using
well-established Brazilian cohorts of putative resistant and
chronically-infected individuals stratified by the intensity of
their Sm infection, arrays for IgG subclass and IgE responses
were probed to these antigens to detect antibody signatures that
were reflective of protective vs. non-protective immune
responses. Moreover, probing for IgE responses allowed
identifying antigens that might induce potentially deleterious
hypersensitivity responses if used as subunit vaccines in endemic
populations. Using multi-dimensional cluster analysis, the
authors showed that putatively resistant individuals mounted a
distinct and robust IgG1 response to a small set of newly
discovered and well characterized surface tegument antigens
compared to chronically infected individuals who mounted
strong IgE and IgG4 responses to many antigens (178).

In another set of studies, Sm-infected individuals recruited from a
schistosomiasis endemic area in Uganda, were treated with PZQ and
followed up from five weeks to one-year post-treatment. Pre-
treatment and five weeks post-treatment IgE, IgG1 and IgG4 levels
against recombinant schistosomula antigens SmKK7, SmLy6A,
SmLy6B and SmTSP7 were measured. Being male was associated
with higher pre-treatment IgG1 levels to SmKK7, SmLy6a and Sm
adult worms. There was no consistent association between the
detectable five weeks post-treatment antibody responses against
schistosomula antigens and reinfection intensity one year after
PZQ treatment. Sm-infected individuals exhibited detectable
antibody responses to schistosomula antigens that were affected by
treatment. These findings indicate that schistosomula antigens
induce highly heterogeneous antibody responses following
treatment besides prior exposure as well as poly-parasitism and
other co-infections. Some antigens induce an immune response and
give rise to increased antibodies, while other antigens do not, and this
could have implications for vaccine development (47, 179). More
natural infection studies are needed to elucidate the immune
responses before and after PZQ administration in geographical
areas where vaccine efficacy trials are planned. Finally, although
the latest non-human primate studies published (123, 142) use
sophisticated immune assessments, the statistical analysis of
baboon immunological data may benefit from new tools such as
COMPASS, a computational framework for unbiased combinatorial
polyfunctionality analysis of antigen-specific T-cell subsets, used in
HIV vaccine trials (180).

Controlled Human Infection Model
Controlled human infection models (CHIM) are gaining
recognition as an approach to accelerating vaccine development,
for use in both non-endemic and endemic populations. CHIM
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could possibly guide the identification of a promising candidate
vaccines for further trials and advance the understanding of
protective immunity. The Sm CHIM model developed in the
Netherlands (181) might be an important vaccine assessment
tool providing guidance without being a gatekeeper of clinical
efficacy trials. Because responses to infections and candidate
vaccines are likely to differ between endemic and non-endemic
settings, it has been proposed to establish a Sm-CHIM in Uganda
where also Sh is endemic (182). A first dose-escalating clinical
safety trial in 17 volunteers using male Sm cercariae, which do not
produce eggs and therefore do not cause lasting pathology, as a
challenge was recently conducted in Leiden, the Netherlands
(NCT02755324). The primary endpoints were adverse events and
infectivity. A dose-related increase in adverse events due to acute
schistosomiasis syndrome, occurred in nine of 17 volunteers.
Overall, five volunteers reported severe adverse events (SAEs).
Infection with 20 Sm cercariae led to SAEs in 18% of volunteers
and high infection rates. Worm-derived circulating anodic antigen,
the biomarker of the primary infection endpoint, peaked in 82% of
volunteers during 3 to 10 weeks post exposure. All volunteers
showed IgM and IgG1 seroconversion and worm-specific cytokine
production by CD4+ T cells. All volunteers were cured with PZQ
provided at 12 weeks after exposure (183).

This model is not validated and its positive and negative
predictive values of the efficacy outcome of vaccines in humans
remain unclear. Also, it does not reflect the situation of endemic
areas in terms of age of target population, repeated natural
exposure, and PZQ rollout. It remains unclear what
parasitological and immunological parameters would be
assessed with the exception of serum circulating anodic antigen.
CONCLUSIONS

Schistosomiasis remains a neglected tropical disease of major
public health concern with high levels of morbidity globally.
Despite considerable efforts in MDA programs, schistosomiasis
is still not contained. A schistosomiasis vaccine may be a critical
component of a multifaceted prevention control approach. Four
major vaccine candidates have entered advanced pre-clinical and
clinical development, but only one reached Phase 3 in Africa and
failed to confer meaningful efficacy. Several other promising
candidates are in preclinical and early clinical development. This
assessment of current candidates revealed some methodological
issues that preempt a predictive comparison between leads.
These include variability in animal models, in particular, non-
human primate studies, and their predictive value of protection
in humans, lack of consensus on essential parasitological and
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immunological assessment parameters and of reliable surrogate
markers of protection, and the need for better designed
parasitological and immunological natural history studies in
the context of PZQ. Although the CHIM model is a great
initiative, it needs to be validated for its positive and negative
predictive values for vaccine efficacy in endemic settings and
should not be considered as a gatekeeper offield trials in humans.

More research is also needed to test new potential vaccine
antigens such as cholinesterases regulating the neurotransmission
of Schistosoma (184), or new tegumental proteins identified by
microarray and other modern technologies (178, 185–189), and
more potent adjuvants targeting specific parts of the innate
immune system to tailor a protective immune response for lead
schistosome vaccine candidates with the long-term aim to achieve
high levels of worm reduction and ultimately elimination of this
terrible disease.
AUTHOR CONTRIBUTIONS

UP, J-LE, and JK conceived, designed and analyzed the available
data. UP, J-LE, and JK wrote the initial manuscript, and FM, DC,
and AS reviewed it. All authors contributed to the article and
approved the submitted version.
FUNDING

Bill and Melinda Gates Foundation [Grant # OPP1097535; INV-
006395; INV-027122; INV-004809 ID52625 and Global Health
Vaccine Accelerator Platform (GH-VAP)]; NIH/NIAID
(2R44AI103983); European Union Horizon 2020 Program
(Grant # DLV-815643); and Wellcome Trust (Grant # 218454/
Z/19/Z) are acknowledged for their support of Sm-p80-based
vaccine development effort.
ACKNOWLEDGMENTS

The authors would like to thank Ms. Ji Yeon Park for her
invaluable bibliography assistance.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fitd.2021.
719369/full#supplementary-material
REFERENCES
1. World Health Organization. Schistosomiasis: Key Facts (2019). Geneva,

Switzerland. Available at: https://www.who.int/news-room/fact-sheets/
detail/schistosomiasis (Accessed Last accessed on 31/05/2021).

2. French MD, Evans D, Fleming FM, Secor WE, Biritwum NK, Brooker SJ,
et al. Schistosomiasis in Africa: Improving Strategies for Long-Term and
Sustainable Morbidity Control. PloS Negl Trop Dis (2018) 12(6):e0006484.
doi: 10.1371/journal.pntd.0006484
3. Gordon CA, Kurscheid J, Williams GM, Clements ACA, Li Y, Zhou XN, et al.
Asian Schistosomiasis: Current Status and Prospects for Control Leading to
Elimination. Trop Med Infect Dis (2019) 4(1). doi: 10.3390/tropicalmed4010040

4. Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, Boussinesq M,
et al. The Global Burden of Disease Study 2010: Interpretation and
Implications for the Neglected Tropical Diseases. PloS Negl Trop Dis
(2014) 8(7):e2865. doi: 10.1371/journal.pntd.0002865

5. Collaborators, G.D.a.I.I.a.P. Global, Regional, and National Incidence,
Prevalence, and Years Lived With Disability for 354 Diseases and Injuries
August 2021 | Volume 2 | Article 719369

https://www.frontiersin.org/articles/10.3389/fitd.2021.719369/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fitd.2021.719369/full#supplementary-material
https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
https://doi.org/10.1371/journal.pntd.0006484
https://doi.org/10.3390/tropicalmed4010040
https://doi.org/10.1371/journal.pntd.0002865
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles


Panzner et al. Advances in Schistosomiasis Vaccines
for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the
Global Burden of Disease Study 2017. Lancet (2018) 392:1789–858. doi:
10.1016/S0140-6736(18)32279-7

6. Deol AK, Fleming FM, Calvo-Urbano B, Walker M, Bucumi V, Gnandou I,
et al. Schistosomiasis - Assessing Progress Toward the 2020 and 2025 Global
Goals. N Engl J Med (2019) 381(26):2519–28. doi: 10.1056/NEJMoa1812165

7. Molehin AJ, Rojo JU, Siddiqui SZ, Gray SA, Carter D, Siddiqui AA.
Development of a Schistosomiasis Vaccine. Expert Rev Vaccines (2016) 15
(5):619–27. doi: 10.1586/14760584.2016.1131127

8. Siddiqui AA, Siddiqui SZ. Sm-P80-Based Schistosomiasis Vaccine:
Preparation for Human Clinical Trials. Trends Parasitol (2017) 33
(3):194–201. doi: 10.1016/j.pt.2016.10.010

9. Colley DG, Bustinduy AL, Secor WE, King CH. Human Schistosomiasis.
Lancet (2014) 383(9936):2253–64. doi: 10.1016/S0140-6736(13)61949-2

10. Colley DG, Secor WE. Immunology of Human Schistosomiasis. Parasite
Immunol (2014) 36(8):347–57. doi: 10.1111/pim.12087

11. Kjetland EF, Hegertun IE, Baay MF, Onsrud M, Ndhlovu PD, Taylor M.
Genital Schistosomiasis and its Unacknowledged Role on HIV Transmission
in the STD Intervention Studies. Int J STD AIDS (2014) 25(10):705–15. doi:
10.1177/0956462414523743

12. Ndeffo Mbah ML, Kjetland EF, Atkins KE, Poolman EM, Orenstein EW,
Meyers LA, et al. Cost-Effectiveness of a Community-Based Intervention for
Reducing the Transmission of Schistosoma Haematobium and HIV in
Africa. Proc Natl Acad Sci U S A (2013) 110(19):7952–7. doi: 10.1073/
pnas.1221396110

13. Ndeffo Mbah ML, Skrip L, Greenhalgh S, Hotez P, Galvani AP. Impact of
Schistosoma Mansoni on Malaria Transmission in Sub-Saharan Africa. PloS
Negl Trop Dis (2014) 8(10):e3234. doi: 10.1371/journal.pntd.0003234

14. Yegorov S, Joag V, Galiwango RM, Good SV, Okech B, Kaul R. Impact of
Endemic Infections on HIV Susceptibility in Sub-Saharan Africa. Trop Dis
Travel Med Vaccines (2019) 5:22. doi: 10.1186/s40794-019-0097-5

15. Hotez PJ, Engels D, Gyapong M, Ducker C, Malecela MN. Female Genital
Schistosomiasis. N Engl J Med (2019) 381(26):2493–5. doi: 10.1056/
NEJMp1914709

16. Fonseca CT, Braz Figueiredo Carvalho G, Carvalho Alves C, de Melo TT.
Schistosoma Tegument Proteins in Vaccine and Diagnosis Development: An
Update. J Parasitol Res (2012) 2012:541268. doi: 10.1155/2012/541268

17. Mo AX, Agosti JM, Walson JL, Hall BF, Gordon L. Schistosomiasis
Elimination Strategies and Potential Role of a Vaccine in Achieving
Global Health Goals. Am J Trop Med Hyg (2014) 90(1):54–60. doi:
10.4269/ajtmh.13-0467

18. Pearce EJ, MacDonald AS. The Immunobiology of Schistosomiasis. Nat Rev
Immunol (2002) 2(7):499–511. doi: 10.1038/nri843

19. Meurs L, Mbow M, Vereecken K, Menten J, Mboup S, Polman K.
Epidemiology of Mixed Schistosoma Mansoni and Schistosoma
Haematobium Infections in Northern Senegal. Int J Parasitol (2012) 42
(3):305–11. doi: 10.1016/j.ijpara.2012.02.002

20. Skelly PJ, Alan Wilson R. Making Sense of the Schistosome Surface. Adv
Parasitol (2006) 63:185–284. doi: 10.1016/S0065-308X(06)63003-0

21. Van Hellemond JJ, Retra K, Brouwers JF, van Balkom BW, Yazdanbakhsh
M, Shoemaker CB, et al. Functions of the Tegument of Schistosomes: Clues
From the Proteome and Lipidome. Int J Parasitol (2006) 36(6):691–9. doi:
10.1016/j.ijpara.2006.01.007

22. Loukas A, Tran M, Pearson MS. Schistosome Membrane Proteins as
Vaccines. Int J Parasitol (2007) 37(3-4):257–63. doi: 10.1016/
j.ijpara.2006.12.001

23. El Ridi R, Tallima H, Mahana N, Dalton JP. Innate Immunogenicity and In
Vitro Protective Potential of Schistosoma Mansoni Lung Schistosomula
Excretory–Secretory Candidate Vaccine Antigens. Microbes Infect (2010)
12(10):700–9. doi: 10.1016/j.micinf.2010.04.012

24. Fukushige M, Mutapi F, Woolhouse MEJ. Woolhouse, Population Level
Changes in Schistosome-Specific Antibody Levels Following Chemotherapy.
Parasite Immunol (2019) 41(1):e12604. doi: 10.1111/pim.12604

25. McManus DP, Bergquist R, Cai P, Ranasinghe S, Tebeje BM, You H.
Schistosomiasis-From Immunopathology to Vaccines. Semin
Immunopathol (2020) 42(3):355–71. doi: 10.1007/s00281-020-00789-x

26. Attallah AM, Ghanem GE, Ismail H, El Waseef AM. Placental and Oral
Delivery of Schistosoma Mansoni Antigen From Infected Mothers to Their
Frontiers in Tropical Diseases | www.frontiersin.org 12
Newborns and Children. Am J Trop Med Hyg (2003) 68(6):647–51. doi:
10.4269/ajtmh.2003.68.647

27. Wynn TA, Hoffmann KF. Defining a Schistosomiasis Vaccination Strategy -
Is it Really Th1 Versus Th2? Parasitol Today (2000) 16(11):497–501. doi:
10.1016/S0169-4758(00)01788-9

28. Stadecker MJ, Asahi H, Finger E, Hernandez HJ, Rutitzky LI, Sun J. The
Immunobiology of Th1 Polarization in High-Pathology Schistosomiasis.
Immunol Rev (2004) 20:168–79. doi: 10.1111/j.0105-2896.2004.00197.x

29. Kalantari P, Bunnell SC, Stadecker MJ. The C-Type Lectin Receptor-Driven,
Th17 Cell-Mediated Severe Pathology in Schistosomiasis: Not All Immune
Responses to Helminth Parasites Are Th2 Dominated. Front Immunol
(2019) 10:26. doi: 10.3389/fimmu.2019.00026

30. Ahmad G, Zhang W, Torben W, Haskins C, Diggs S, Noor Z, et al. Prime-
Boost and Recombinant Protein Vaccination Strategies Using Sm-P80
Protects Against Schistosoma Mansoni Infection in the Mouse Model to
Levels Previously Attainable Only by the Irradiated Cercarial Vaccine.
Parasitol Res (2009) 105(6):1767–77. doi: 10.1007/s00436-009-1646-z

31. Hewitson JP, Hamblin PA, Mountford AP. Immunity Induced by the
Radiation-Attenuated Schistosome Vaccine. Parasite Immunol (2005) 27
(7-8):271–80. doi: 10.1111/j.1365-3024.2005.00764.x

32. Wilson MS, Mentink-Kane M, Pesce JT, Ramalingam TR, Thompson R,
Wynn TA. Immunopathology of Schistosomiasis. Immunol Cell Biol (2007)
85(2):148–54. doi: 10.1038/sj.icb.7100014

33. Nausch N, Midzi N, Mduluza T, Maizels RM, Mutapi F. Regulatory and
Activated T Cells in Human Schistosoma Haematobium Infections. PloS
One (2011) 6(2):e16860. doi: 10.1371/journal.pone.0016860

34. Fairfax K, Nascimento M, Huang SC, Everts B, Pearce EJ. Th2 Responses in
Schistosomiasis. Semin Immunopathol (2012) 34(6):863–71. doi: 10.1007/
s00281-012-0354-4

35. Negrao-Correa D, Fittipaldi JF, Lambertucci JR, Teixeira MM, Antunes CM,
Carneiro M. Association of Schistosoma Mansoni-Specific IgG and IgE
Antibody Production and Clinical Schistosomiasis Status in a Rural Area of
Minas Gerais, Brazil. PloS One (2014) 9(2):e88042. doi: 10.1371/
journal.pone.0088042

36. Vereecken K, Naus CW, Polman K, Scott JT, Diop M, Gryseels B, et al.
Associations Between Specific Antibody Responses and Resistance to
Reinfection in a Senegalese Population Recently Exposed to Schistosoma
Mansoni. Trop Med Int Health (2007) 12(3):431–44. doi: 10.1111/j.1365-
3156.2006.01805.x

37. Garraud O, Perraut R, Riveau G, Nutman TB. Class and Subclass Selection in
Parasite-Specific Antibody Responses. Trends Parasitol (2003) 19(7):300–4.
doi: 10.1016/S1471-4922(03)00139-9

38. Hotez PJ, Bethony JM, Diemert DJ, Pearson M, Loukas A. Developing
Vaccines to Combat Hookworm Infection and Intestinal Schistosomiasis.
Nat Rev Microbiol (2010) 8(11):814–26. doi: 10.1038/nrmicro2438

39. Ahmad G, Zhang W, Torben W, Ahrorov A, Damian RT, Wolf RF, et al.
Preclinical Prophylactic Efficacy Testing of Sm-P80-Based Vaccine in a
Nonhuman Primate Model of Schistosoma Mansoni Infection and
Immunoglobulin G and E Responses to Sm-P80 in Human Serum
Samples From an Area Where Schistosomiasis Is Endemic. J Infect Dis
(2011) 204(9):1437–49. doi: 10.1093/infdis/jir545

40. Nelwan ML. Schistosomiasis: Life Cycle, Diagnosis, and Control. Curr Ther
Res Clin Exp (2019) 91:5–9. doi: 10.1016/j.curtheres.2019.06.001

41. Sokolow SH, Wood CL, Jones IJ, Lafferty KD, Kuris AM, Hsieh MH, et al. To
Reduce the Global Burden of Human Schistosomiasis, Use ’Old Fashioned’
Snail Control. Trends Parasitol (2018) 34(1):23–40. doi: 10.1016/
j.pt.2017.10.002

42. Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gartner F, Correia da Costa JM.
Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode
of Action, and Resistance. Antimicrob Agents Chemother (2017) 61(5). doi:
10.1128/AAC.02582-16

43. Schneeberger PHH, Coulibaly JT, Panic G, Daubenberger C, Gueuning M,
Frey JE, et al. Investigations on the Interplays Between Schistosoma
Mansoni, Praziquantel and the Gut Microbiome. Parasit Vectors (2018) 11
(1):168. doi: 10.1186/s13071-018-2739-2

44. Mutapi F, Maizels R, Fenwick A, Woolhouse M. Human Schistosomiasis in
the Post Mass Drug Administration Era. Lancet Infect Dis (2017) 17(2):e42–
8. doi: 10.1016/S1473-3099(16)30475-3
August 2021 | Volume 2 | Article 719369

https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1056/NEJMoa1812165
https://doi.org/10.1586/14760584.2016.1131127
https://doi.org/10.1016/j.pt.2016.10.010
https://doi.org/10.1016/S0140-6736(13)61949-2
https://doi.org/10.1111/pim.12087
https://doi.org/10.1177/0956462414523743
https://doi.org/10.1073/pnas.1221396110
https://doi.org/10.1073/pnas.1221396110
https://doi.org/10.1371/journal.pntd.0003234
https://doi.org/10.1186/s40794-019-0097-5
https://doi.org/10.1056/NEJMp1914709
https://doi.org/10.1056/NEJMp1914709
https://doi.org/10.1155/2012/541268
https://doi.org/10.4269/ajtmh.13-0467
https://doi.org/10.1038/nri843
https://doi.org/10.1016/j.ijpara.2012.02.002
https://doi.org/10.1016/S0065-308X(06)63003-0
https://doi.org/10.1016/j.ijpara.2006.01.007
https://doi.org/10.1016/j.ijpara.2006.12.001
https://doi.org/10.1016/j.ijpara.2006.12.001
https://doi.org/10.1016/j.micinf.2010.04.012
https://doi.org/10.1111/pim.12604
https://doi.org/10.1007/s00281-020-00789-x
https://doi.org/10.4269/ajtmh.2003.68.647
https://doi.org/10.1016/S0169-4758(00)01788-9
https://doi.org/10.1111/j.0105-2896.2004.00197.x
https://doi.org/10.3389/fimmu.2019.00026
https://doi.org/10.1007/s00436-009-1646-z
https://doi.org/10.1111/j.1365-3024.2005.00764.x
https://doi.org/10.1038/sj.icb.7100014
https://doi.org/10.1371/journal.pone.0016860
https://doi.org/10.1007/s00281-012-0354-4
https://doi.org/10.1007/s00281-012-0354-4
https://doi.org/10.1371/journal.pone.0088042
https://doi.org/10.1371/journal.pone.0088042
https://doi.org/10.1111/j.1365-3156.2006.01805.x
https://doi.org/10.1111/j.1365-3156.2006.01805.x
https://doi.org/10.1016/S1471-4922(03)00139-9
https://doi.org/10.1038/nrmicro2438
https://doi.org/10.1093/infdis/jir545
https://doi.org/10.1016/j.curtheres.2019.06.001
https://doi.org/10.1016/j.pt.2017.10.002
https://doi.org/10.1016/j.pt.2017.10.002
https://doi.org/10.1128/AAC.02582-16
https://doi.org/10.1186/s13071-018-2739-2
https://doi.org/10.1016/S1473-3099(16)30475-3
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles


Panzner et al. Advances in Schistosomiasis Vaccines
45. Eyoh E, McCallum P, Killick J, Amanfo S, Mutapi F, Astier AL. The
Anthelmintic Drug Praziquantel Promotes Human Tr1 Differentiation.
Immunol Cell Biol (2019) 97(5):512–8. doi: 10.1111/imcb.12229

46. Chisango TJ, Ndlovu B, Vengesai A, Nhidza AF, Sibanda EP, Zhou D, et al.
Benefits of Annual Chemotherapeutic Control of Schistosomiasis on the
Development of Protective Immunity. BMC Infect Dis (2019) 19(1):219. doi:
10.1186/s12879-019-3811-z

47. Driciru E, Koopman JPR, Cose S, Siddiqui AA, Yazdanbakhsh M, Elliott
AM, et al. Immunological Considerations for Schistosoma Vaccine
Development: Transitioning to Endemic Settings. Front Immunol (2021)
12:635985. doi: 10.3389/fimmu.2021.635985

48. McWilliam HE, Driguez P, Piedrafita D, McManus DP, Meeusen EN. Novel
Immunomic Technologies for Schistosome Vaccine Development. Parasite
Immunol (2012) 34(5):276–84. doi: 10.1111/j.1365-3024.2011.01330.x

49. Keitel WA, Potter GE, Diemert D, Bethony J, El Sahly HM, Kennedy JK,
et al. A Phase 1 Study of the Safety, Reactogenicity, and Immunogenicity of a
Schistosoma Mansoni Vaccine With or Without Glucopyranosyl Lipid A
Aqueous Formulation (GLA-AF) in Healthy Adults From a non-Endemic
Area. Vaccine (2019) 37(43):6500–9. doi: 10.1016/j.vaccine.2019.08.075

50. El Ridi R, Tallima H. Why the Radiation-Attenuated Cercarial
Immunization Studies Failed to Guide the Road for an Effective
Schistosomiasis Vaccine: A Review. J Adv Res (2015) 6(3):255–67. doi:
10.1016/j.jare.2014.10.002

51. Merrifield M, Hotez PJ, Beaumier CM, Gillespie P, Strych U, Hayward T,
et al. Advancing a Vaccine to Prevent Human Schistosomiasis. Vaccine
(2016) 34(26):2988–91. doi: 10.1016/j.vaccine.2016.03.079

52. Siddiqui AA, Phillips T, Charest H, Podesta RB, Quinlin ML, Pinkston JR,
et al. Enhancement of Sm-P80 (Large Subunit of Calpain) Induced
Protective Immunity Against Schistosoma Mansoni Through Co-Delivery
of Interleukin-2 and Interleukin-12 in a DNA Vaccine Formulation. Vaccine
(2003) 21(21-22):2882–9. doi: 10.1016/S0264-410X(03)00159-2

53. Mo AX, Colley DG. Workshop Report: Schistosomiasis Vaccine Clinical
Development and Product Characteristics. Vaccine (2016) 34(8):995–1001.
doi: 10.1016/j.vaccine.2015.12.032

54. Anisuzzaman, Tsuji N. Schistosomiasis and Hookworm Infection in
Humans: Disease Burden, Pathobiology and Anthelmintic Vaccines.
Parasitol Int (2020) 75:102051. doi: 10.1016/j.parint.2020.102051

55. Hotez PJ, Bottazzi ME, Bethony J, Diemert DD. Advancing the Development
of a Human Schistosomiasis Vaccine. Trends Parasitol (2019) 35(2):104–8.
doi: 10.1016/j.pt.2018.10.005

56. Zhang W, Li J, Duke M, Jones MK, Kuang L, Zhang J, et al. Inconsistent
Protective Efficacy and Marked Polymorphism Limits the Value of
Schistosoma Japonicum Tetraspanin-2 as a Vaccine Target. PloS Negl
Trop Dis (2011) 5(5):e1166. doi: 10.1371/journal.pntd.0001166

57. Curti E, Kwityn C, Zhan B, Gillespie P, Brelsford J, Deumic V, et al.
Expression at a 20L Scale and Purification of the Extracellular Domain of
the Schistosoma Mansoni TSP-2 Recombinant Protein: A Vaccine
Candidate for Human Intestinal Schistosomiasis. Hum Vaccin
Immunother (2013) 9(11):2342–50. doi: 10.4161/hv.25787

58. Cupit PM, Steinauer ML, Tonnessen BW, Eric Agola L, Kinuthia JM, Mwangi
IN, et al. PolymorphismAssociatedWith the SchistosomaMansoni Tetraspanin-
2 Gene. Int J Parasitol (2011) 41(12):1249–52. doi: 10.1016/j.ijpara.2011.07.007

59. Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a Glance. J
Cell Sci (2014) 127(Pt 17):3641–8. doi: 10.1242/jcs.154906

60. Jia X J, Schulte L, Loukas A, Pickering D, Pearson M, Mobli M, et al. Solution
Structure, Membrane Interactions, and Protein Binding Partners of the
Tetraspanin Sm-TSP-2, a Vaccine Antigen From the Human Blood Fluke
Schistosoma Mansoni. J Biol Chem (2014) 289(10):7151–63. doi: 10.1074/
jbc.M113.531558

61. Tran MH, Freitas TC, Cooper L, Gaze S, Gatton ML, Jones MK, et al.
Suppression of mRNAs Encoding Tegument Tetraspanins From
Schistosoma Mansoni Results in Impaired Tegument Turnover. PloS
Pathog (2010) 6(4):e1000840. doi: 10.1371/journal.ppat.1000840

62. Krautz-Peterson G, Debatis M, Tremblay JM, Oliveira SC, Da’dara AA,
Skelly PJ, et al. Schistosoma Mansoni Infection of Mice, Rats and Humans
Elicits a Strong Antibody Response to a Limited Number of Reduction-
Sensitive Epitopes on Five Major Tegumental Membrane Proteins. PloS Negl
Trop Dis (2017) 11(1):e0005306. doi: 10.1371/journal.pntd.0005306
Frontiers in Tropical Diseases | www.frontiersin.org 13
63. Pinheiro CS, Ribeiro AP, Cardoso FC, Martins VP, Figueiredo BC, Assis NR,
et al. A Multivalent Chimeric Vaccine Composed of Schistosoma Mansoni
SmTSP-2 and Sm29 was Able to Induce Protection Against Infection in
Mice. Parasite Immunol (2014) 36(7):303–12. doi: 10.1111/pim.12118

64. Cardoso FC, Macedo GC, Gava E, Kitten GT, Mati VL, de Melo AL, et al.
Schistosoma Mansoni Tegument Protein Sm29 Is Able to Induce a Th1-
Type of Immune Response and Protection Against Parasite Infection. PloS
Negl Trop Dis (2008) 2(10):e308. doi: 10.1371/journal.pntd.0000308

65. Tran MH, Pearson MS, Bethony JM, Smyth DJ, Jones MK, Duke M, et al.
Tetraspanins on the Surface of Schistosoma Mansoni Are Protective
Antigens Against Schistosomiasis. Nat Med (2006) 12(7):835–40. doi:
10.1038/nm1430

66. Cai P, Bu L, Wang J, Wang Z, Zhong X, Wang H. Molecular
Characterization of Schistosoma Japonicum Tegument Protein
Tetraspanin-2: Sequence Variation and Possible Implications for Immune
Evasion. Biochem Biophys Res Commun (2008) 372(1):197–202. doi:
10.1016/j.bbrc.2008.05.042

67. Rinaldi G, Okatcha TI, Popratiloff A, Ayuk MA, Suttiprapa S, Mann VH,
et al. Genetic Manipulation of Schistosoma Haematobium, the Neglected
Schistosome. PloS Negl Trop Dis (2011) 5(10):e1348. doi: 10.1371/
journal.pntd.0001348

68. Yuan C, Fu YJ, Li J, Yue YF, Cai LL, Xiao WJ, et al. Schistosoma Japonicum:
Efficient and Rapid Purification of the Tetraspanin Extracellular Loop 2, a
Potential Protective Antigen Against Schistosomiasis in Mammalian. Exp
Parasitol (2010) 126(4):456–61. doi: 10.1016/j.exppara.2010.05.018

69. Pearson MS, Pickering DA, McSorley HJ, Bethony JM, Tribolet L, Dougall
AM, et al. Enhanced Protective Efficacy of a Chimeric Form of the
Schistosomiasis Vaccine Antigen Sm-TSP-2. PloS Negl Trop Dis (2012) 6
(3):e1564. doi: 10.1371/journal.pntd.0001564

70. Goncalves de Assis NR, Batistoni de Morais S, Figueiredo BC, Ricci ND, de
Almeida LA, da Silva Pinheiro C, et al. DNA Vaccine Encoding the Chimeric
Form of Schistosoma Mansoni Sm-TSP2 and Sm29 Confers Partial
Protection Against Challenge Infection. PloS One (2015) 10(5):e0125075.
doi: 10.1371/journal.pone.0125075

71. Rahmani A, Baee M, Rostamtabar M, Karkhah A, Alizadeh S, Tourani M,
et al. Development of a Conserved Chimeric Vaccine Based on Helper T-Cell
and CTL Epitopes for Induction of Strong Immune Response Against
Schistosoma Mansoni Using Immunoinformatics Approaches. Int J Biol
Macromol (2019) 141:125–36. doi: 10.1016/j.ijbiomac.2019.08.259

72. Medicine/ClinicalTrials.gov USNLo. A Phase I Study of the Safety,
Reactogenicity, and Immunogenicity of Sm-TSP-2/Alhydrogel® With or
Without GLA-AF for Intestinal Schistosomiasis in Healthy Adults
[Nct02337855] (2017). Available at: https://clinicaltrials.gov/ct2/show/
NCT02337855?term=TSP&cond=Schistosomiasis&rank=1 (Accessed Last
accessed on 30/05/2021).

73. Medicine/ClinicalTrials.gov USNLo. A Phase Ib Study of the Safety,
Reactogenicity, and Immunogenicity of Sm-TSP-2/Alhydrogel)(R) With or
Without AP 10-701 for Intestinal Schistosomiasis in Healthy Exposed Adults
[Nct03110757] (2018). Available at: https://clinicaltrials.gov/ct2/show/
NCT03110757?term=TSP&cond=Schistosomiasis&rank=3 (Accessed Last
accessed on 30/05/2021).

74. Medicine/ClinicalTrials.gov USNLo. Sm-TSP-2 Schistosomiasis Vaccine in
Healthy Ugandan Adults [Nct03910972] (2019). Available at: https://
c l in ica l t r i a l s . gov/c t2 / show/NCT03910972? term=TSP&cond=
Schistosomiasis&rank=2 (Accessed Last accessed on 30/05/2021).

75. Moser D, Tendler M, Griffiths G, Klinkert MQ. A 14-kDa Schistosoma Mansoni
Polypeptide Is Homologous to a Gene Family of Fatty Acid Binding Proteins. J
Biol Chem (1991) 266(13):8447–54. doi: 10.1016/S0021-9258(18)92995-9

76. Rodriguez-Perez J, Rodriguez-Medina JR, Garcia-Blanco MA, Hillyer GV.
Fasciola Hepatica: Molecular Cloning, Nucleotide Sequence, and Expression
of a Gene Encoding a Polypeptide Homologous to a Schistosoma Mansoni
Fatty Acid-Binding Protein. Exp Parasitol (1992) 74(4):400–7. doi: 10.1016/
0014-4894(92)90202-L

77. Becker MM, Kalinna BH, Waine GJ, McManus DP. Gene Cloning,
Overproduction and Purification of a Functionally Active Cytoplasmic
Fatty Acid-Binding Protein (Sj-FABPC) From the Human Blood Fluke
Schistosoma Japonicum. Gene (1994) 148(2):321–5. doi: 10.1016/0378-1119
(94)90706-4
August 2021 | Volume 2 | Article 719369

https://doi.org/10.1111/imcb.12229
https://doi.org/10.1186/s12879-019-3811-z
https://doi.org/10.3389/fimmu.2021.635985
https://doi.org/10.1111/j.1365-3024.2011.01330.x
https://doi.org/10.1016/j.vaccine.2019.08.075
https://doi.org/10.1016/j.jare.2014.10.002
https://doi.org/10.1016/j.vaccine.2016.03.079
https://doi.org/10.1016/S0264-410X(03)00159-2
https://doi.org/10.1016/j.vaccine.2015.12.032
https://doi.org/10.1016/j.parint.2020.102051
https://doi.org/10.1016/j.pt.2018.10.005
https://doi.org/10.1371/journal.pntd.0001166
https://doi.org/10.4161/hv.25787
https://doi.org/10.1016/j.ijpara.2011.07.007
https://doi.org/10.1242/jcs.154906
https://doi.org/10.1074/jbc.M113.531558
https://doi.org/10.1074/jbc.M113.531558
https://doi.org/10.1371/journal.ppat.1000840
https://doi.org/10.1371/journal.pntd.0005306
https://doi.org/10.1111/pim.12118
https://doi.org/10.1371/journal.pntd.0000308
https://doi.org/10.1038/nm1430
https://doi.org/10.1016/j.bbrc.2008.05.042
https://doi.org/10.1371/journal.pntd.0001348
https://doi.org/10.1371/journal.pntd.0001348
https://doi.org/10.1016/j.exppara.2010.05.018
https://doi.org/10.1371/journal.pntd.0001564
https://doi.org/10.1371/journal.pone.0125075
https://doi.org/10.1016/j.ijbiomac.2019.08.259
https://clinicaltrials.gov/ct2/show/NCT02337855?term=TSP&cond=Schistosomiasis&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT02337855?term=TSP&cond=Schistosomiasis&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT03110757?term=TSP&cond=Schistosomiasis&amp;rank=3
https://clinicaltrials.gov/ct2/show/NCT03110757?term=TSP&cond=Schistosomiasis&amp;rank=3
https://clinicaltrials.gov/ct2/show/NCT03910972?term=TSP&cond=Schistosomiasis&amp;rank=2
https://clinicaltrials.gov/ct2/show/NCT03910972?term=TSP&cond=Schistosomiasis&amp;rank=2
https://clinicaltrials.gov/ct2/show/NCT03910972?term=TSP&cond=Schistosomiasis&amp;rank=2
https://doi.org/10.1016/S0021-9258(18)92995-9
https://doi.org/10.1016/0014-4894(92)90202-L
https://doi.org/10.1016/0014-4894(92)90202-L
https://doi.org/10.1016/0378-1119(94)90706-4
https://doi.org/10.1016/0378-1119(94)90706-4
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles


Panzner et al. Advances in Schistosomiasis Vaccines
78. Brito CF, Oliveira GC, Oliveira SC, Street M, Riengrojpitak S, Wilson RA,
et al. Sm14 Gene Expression in Different Stages of the Schistosoma Mansoni
Life Cycle and Immunolocalization of the Sm14 Protein Within the Adult
Worm. Braz J Med Biol Res (2002) 35(3):377–81. doi: 10.1590/S0100-
879X2002000300014

79. Thaumaturgo N, Vilar MM, Diogo CM, Edelenyi R, Tendler M. Preliminary
Analysis of Sm14 in Distinct Fractions of Schistosoma Mansoni Adult
Worm Extract. Mem Inst Oswaldo Cruz (2001) 96 Suppl:79–83. doi:
10.1590/S0074-02762001000900011

80. Scott JC, Kennedy MW, McManus DP. Molecular and Immunological
Characterisation of a Polymorphic Cytosolic Fatty Acid Binding Protein
From the Human Blood Fluke of Humans, Schistosoma Japonicum. Biochim
Biophys Acta (2000) 1517(1):53–62. doi: 10.1016/S0167-4781(00)00254-2

81. Thaumaturgo N, Vilar MM, Edelenyi R, Tendler M. Characterization of
Sm14 Related Components in Different Helminths by Sodium Dodecyl
Sulphate-Polyacrylamide Gel Electrophoresis and Western Blotting
Analysis. Mem Inst Oswaldo Cruz (2002) 97(Suppl 1):115–6. doi: 10.1590/
S0074-02762002000900024

82. Lee JS, Yong TS. Expression and Cross-Species Reactivity of Fatty Acid-
Binding Protein of Clonorchis Sinensis. Parasitol Res (2004) 93(5):339–43.
doi: 10.1007/s00436-004-1139-z

83. Espino AM, Hillyer GV. Identification of Fatty Acid Molecules in a Fasciola
Hepatica Immunoprophylactic Fatty Acid-Binding Protein. J Parasitol (2001)
87(2):426–8. doi: 10.1645/0022-3395(2001)087[0426:IOFAMI]2.0.CO;2

84. Ribeiro F, Vieira Cdos S, Fernandes A, Araujo N, Katz N. The Effects of
Immunization With Recombinant Sm14 (Rsm14) in Reducing Worm Burden
and Mortality of Mice Infected With Schistosoma Mansoni. Rev Soc Bras Med
Trop (2002) 35(1):11–7. doi: 10.1590/S0037-86822002000100003

85. Tendler M, Vilar MM, Brito CA, Freire NM, Katz N, Simpson A.
Vaccination Against Schistosomiasis and Fascioliasis With the New
Recombinant Antigen Sm14: Potential Basis of a Multi-Valent Anti-
Helminth Vaccine? Mem Inst Oswaldo Cruz (1995) 90(2):255–6. doi:
10.1590/S0074-02761995000200022

86. Tendler M, Brito CA, Vilar MM, Serra-Freire N, Diogo CM, Almeida MS,
et al. A Schistosoma Mansoni Fatty Acid-Binding Protein, Sm14, Is the
Potential Basis of a Dual-Purpose Anti-Helminth Vaccine. Proc Natl Acad
Sci U S A (1996) 93(1):269–73. doi: 10.1073/pnas.93.1.269

87. Mendes RE, Zafra R, Perez-Ecija RA, Buffoni L, Martinez-Moreno A,
Tendler M, et al. Evaluation of Local Immune Response to Fasciola
Hepatica Experimental Infection in the Liver and Hepatic Lymph Nodes
of Goats Immunized With Sm14 Vaccine Antigen. Mem Inst Oswaldo Cruz
(2010) 105(5):698–705. doi: 10.1590/S0074-02762010000500017

88. Zafra R, Buffoni L, Martinez-Moreno A, Perez-Ecija A, Martinez-Moreno FJ,
Perez J. A Study of the Liver of Goats Immunized With a Synthetic Peptide
of the Sm14 Antigen and Challenged With Fasciola Hepatica. J Comp Pathol
(2008) 139(4):169–76. doi: 10.1016/j.jcpa.2008.06.004

89. Zafra R, Buffoni L, Perez-Ecija RA, Mendes RE, Martinez-Moreno A,
Martinez-Moreno FJ, et al. Study of the Local Immune Response to
Fasciola Hepatica in the Liver and Hepatic Lymph Nodes of Goats
Immunised With a Peptide of the Sm14 Antigen. Res Vet Sci (2009) 87
(2):226–32. doi: 10.1016/j.rvsc.2009.02.013

90. Almeida MS, Torloni H, Lee-Ho P, Vilar MM, Thaumaturgo N, Simpson AJ,
et al. Vaccination Against Fasciola Hepatica Infection Using a Schistosoma
Mansoni Defined Recombinant Antigen, Sm14. Parasite Immunol (2003) 25
(3):135–7. doi: 10.1046/j.1365-3024.2003.00619.x

91. Tendler M, Simpson AJ. The Biotechnology-Value Chain: Development of
Sm14 as a Schistosomiasis Vaccine. Acta Trop (2008) 108(2-3):263–6. doi:
10.1016/j.actatropica.2008.09.002

92. Tendler M, Almeida M, Simpson A. Development of the Brazilian Anti
Schistosomiasis Vaccine Based on the Recombinant Fatty Acid Binding
Protein Sm14 Plus GLA-SE Adjuvant. Front Immunol (2015) 6:218. doi:
10.3389/fimmu.2015.00218

93. Ramos CR, Vilar MM, Nascimento AL, Ho PL, Thaumaturgo N, Edelenyi R,
et al. R-Sm14 - pRSETA Efficacy in Experimental Animals. Mem Inst Oswaldo
Cruz (2001) 96(Suppl):131–5. doi: 10.1590/S0074-02762001000900019

94. Damasceno L, Ritter G, Batt CA. Process Development for Production and
Purification of the Schistosoma Mansoni Sm14 Antigen. Protein Expr Purif
(2017) 134:72–81. doi: 10.1016/j.pep.2017.04.002
Frontiers in Tropical Diseases | www.frontiersin.org 14
95. Ramos CR, Figueredo RC, Pertinhez TA, Vilar MM, do Nascimento AL,
Tendler M, et al. Gene Structure and M20T Polymorphism of the
Schistosoma Mansoni Sm14 Fatty Acid-Binding Protein. Molecular,
Functioanl, and Immunoprotection Analysis. J Biol Chem (2003) 278
(15):12745–51. doi: 10.1074/jbc.M211268200

96. Ramos CR, Spisni A, Oyama SJr., Sforca ML, Ramos HR, Vilar MM, et al.
Stability Improvement of the Fatty Acid Binding Protein Sm14 From S.
Mansoni by Cys Replacement: Structural and Functional Characterization of
a Vaccine Candidate. Biochim Biophys Acta (2009) 1794(4):655–62.
doi: 10.1016/j.bbapap.2008.12.010

97. Fonseca CT, Brito CF, Alves JB, Oliveira SC. IL-12 Enhances Protective
Immunity in Mice Engendered by ImmunizationWith Recombinant 14 kDa
Schistosoma Mansoni Fatty Acid-Binding Protein Through an IFN-Gamma
and TNF-Alpha Dependent Pathway. Vaccine (2004) 22(3-4):503–10. doi:
10.1016/j.vaccine.2003.07.010

98. Fonseca CT, Cunha-Neto E, Kalil J, Jesus AR, Correa-Oliveira R, Carvalho
EM, et al. Identification of Immunodominant Epitopes of Schistosoma
Mansoni Vaccine Candidate Antigens Using Human T Cells. Mem Inst
Oswaldo Cruz (2004) 99(5 Suppl 1):63–6. doi: 10.1590/S0074-
02762004000900011

99. Fonseca CT, Cunha-Neto E, Goldberg AC, Kalil J, de Jesus AR, Carvalho
EM, et al. Human T Cell Epitope Mapping of the Schistosoma Mansoni 14-
kDa Fatty Acid-Binding Protein Using Cells From Patients Living in Areas
Endemic for Schistosomiasis. Microbes Infect (2005) 7(2):204–12. doi:
10.1016/j.micinf.2004.10.012

100. Fonseca CT, Pacifico LG, Barsante MM, Rassi T, Cassali GD, Oliveira SC. Co-
Administration of Plasmid Expressing IL-12 With 14-kDa Schistosoma
Mansoni Fatty Acid-Binding Protein cDNA Alters Immune Response Profiles
and Fails to Enhance Protection Induced by Sm14 DNA Vaccine Alone.
Microbes Infect (2006) 8(9-10):2509–16. doi: 10.1016/j.micinf.2006.06.008

101. Varaldo PB, Leite LC, Dias WO, Miyaji EN, Torres FI, Gebara VC, et al.
Recombinant Mycobacterium Bovis BCG Expressing the Sm14 Antigen of
Schistosoma Mansoni Protects Mice From Cercarial Challenge. Infect
Immun (2004) 72(6):3336–43. doi: 10.1128/IAI.72.6.3336-3343.2004

102. Garcia TC, Fonseca CT, Pacifico LG, Duraes Fdo V, Marinho FA, Penido
ML, et al. Peptides Containing T Cell Epitopes, Derived From Sm14, But Not
From Paramyosin, Induce a Th1 Type of Immune Response, Reduction in
Liver Pathology and Partial Protection Against Schistosoma Mansoni
Infection in Mice. Acta Trop (2008) 106(3):162–7. doi: 10.1016/
j.actatropica.2008.03.003

103. Ewaisha RE, Bahey-El-Din M, Mossallam SF, Amer EI, Aboushleib HM,
Khalil AM. Combination of the Two Schistosomal Antigens Sm14 and Sm29
Elicits Significant Protection Against Experimental Schistosoma Mansoni
Infection. Exp Parasitol (2014) 145:51–60. doi: 10.1016/j.exppara.
2014.07.010

104. Ewaisha RE, Bahey-El-Din M, Mossallam SF, Khalil AM, Aboushleib HM.
Successful Detection, Expression and Purification of the Alternatively Spliced
Truncated Sm14 Antigen of an Egyptian Strain of Schistosoma Mansoni.
J Helminthol (2015) 89(6):764–8. doi: 10.1017/S0022149X14000571

105. Mossallam SF, Amer EI, Ewaisha RE, Khalil AM, Aboushleib HM, Bahey-El-
Din M. Fusion Protein Comprised of the Two Schistosomal Antigens, Sm14
and Sm29, Provides Significant Protection Against Schistosoma Mansoni in
Murine Infection Model. BMC Infect Dis (2015) 15:147. doi: 10.1186/s12879-
015-0906-z

106. Varaldo PB, Miyaji EN, Vilar MM, Campos AS, Dias WO, Armoa GR, et al.
Mycobacterial Codon Optimization of the Gene Encoding the Sm14 Antigen
of Schistosoma Mansoni in Recombinant Mycobacterium Bovis Bacille
Calmette-Guerin Enhances Protein Expression But Not Protection Against
Cercarial Challenge in Mice. FEMS Immunol Med Microbiol (2006) 48
(1):132–9. doi: 10.1111/j.1574-695X.2006.00133.x

107. Abreu PA, Miyasato PA, Vilar MM, Dias WO, Ho PL, Tendler M, et al. Sm14
of Schistosoma Mansoni in Fusion With Tetanus Toxin Fragment C Induces
Immunoprotection Against Tetanus and Schistosomiasis in Mice. Infect
Immun (2004) 72(10):5931–7. doi: 10.1128/IAI.72.10.5931-5937.2004

108. Pacheco LG, Mati VL, Castro TL, Dorella FA, Oliveira SC, Miyoshi A, et al.
Oral Immunization With Salmonella Harboring a Sm14-Based DNA
Vaccine Does Not Protect Mice Against Schistosoma Mansoni Infection.
Parasitol Int (2008) 57(4):506–8. doi: 10.1016/j.parint.2008.04.010
August 2021 | Volume 2 | Article 719369

https://doi.org/10.1590/S0100-879X2002000300014
https://doi.org/10.1590/S0100-879X2002000300014
https://doi.org/10.1590/S0074-02762001000900011
https://doi.org/10.1016/S0167-4781(00)00254-2
https://doi.org/10.1590/S0074-02762002000900024
https://doi.org/10.1590/S0074-02762002000900024
https://doi.org/10.1007/s00436-004-1139-z
https://doi.org/10.1645/0022-3395(2001)087[0426:IOFAMI]2.0.CO;2
https://doi.org/10.1590/S0037-86822002000100003
https://doi.org/10.1590/S0074-02761995000200022
https://doi.org/10.1073/pnas.93.1.269
https://doi.org/10.1590/S0074-02762010000500017
https://doi.org/10.1016/j.jcpa.2008.06.004
https://doi.org/10.1016/j.rvsc.2009.02.013
https://doi.org/10.1046/j.1365-3024.2003.00619.x
https://doi.org/10.1016/j.actatropica.2008.09.002
https://doi.org/10.3389/fimmu.2015.00218
https://doi.org/10.1590/S0074-02762001000900019
https://doi.org/10.1016/j.pep.2017.04.002
https://doi.org/10.1074/jbc.M211268200
https://doi.org/10.1016/j.bbapap.2008.12.010
https://doi.org/10.1016/j.vaccine.2003.07.010
https://doi.org/10.1590/S0074-02762004000900011
https://doi.org/10.1590/S0074-02762004000900011
https://doi.org/10.1016/j.micinf.2004.10.012
https://doi.org/10.1016/j.micinf.2006.06.008
https://doi.org/10.1128/IAI.72.6.3336-3343.2004
https://doi.org/10.1016/j.actatropica.2008.03.003
https://doi.org/10.1016/j.actatropica.2008.03.003
https://doi.org/10.1016/j.exppara.2014.07.010
https://doi.org/10.1016/j.exppara.2014.07.010
https://doi.org/10.1017/S0022149X14000571
https://doi.org/10.1186/s12879-015-0906-z
https://doi.org/10.1186/s12879-015-0906-z
https://doi.org/10.1111/j.1574-695X.2006.00133.x
https://doi.org/10.1128/IAI.72.10.5931-5937.2004
https://doi.org/10.1016/j.parint.2008.04.010
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles


Panzner et al. Advances in Schistosomiasis Vaccines
109. Pacheco LG, Zucconi E, Mati VL, Garcia RM, Miyoshi A, Oliveira SC, et al.
Oral Administration of a Live Aro Attenuated Salmonella Vaccine Strain
Expressing 14-kDa Schistosoma Mansoni Fatty Acid-Binding Protein
Induced Partial Protection Against Experimental Schistosomiasis. Acta
Trop (2005) 95(2):132–42. doi: 10.1016/j.actatropica.2005.05.007

110. Espindola MS, Frantz FG, Soares LS, Masson AP, Tefe-Silva C, Bitencourt
CS, et al. Combined Immunization Using DNA-Sm14 and DNA-Hsp65
Increases CD8+ Memory T Cells, Reduces Chronic Pathology and Decreases
Egg Viability During Schistosoma Mansoni Infection. BMC Infect Dis (2014)
14:263. doi: 10.1186/1471-2334-14-263

111. Medicine/ClinicalTrials.gov USNLo. Phase 1 Study to Evaluate the Safety of
the Vaccine Prepared Sm14 Against Schistosomiasis [NCT01154049] (2014).
Available at: https://clinicaltrials.gov/ct2/show/NCT01154049?term=
Sm14&cond=Schistosomiasis&rank=1 (Accessed Last accessed on
30/05/2021).

112. Santini-Oliveira M, Coler RN, Parra J, Veloso V, Jayashankar L, Pinto PM,
et al. Schistosomiasis Vaccine Candidate Sm14/GLA-SE: Phase 1 Safety and
Immunogenicity Clinical Trial in Healthy, Male Adults. Vaccine (2016) 34
(4):586–94. doi: 10.1016/j.vaccine.2015.10.027

113. Tendler M, Almeida MS, Vilar MM, Pinto PM, Limaverde-Sousa G. Current
Status of the Sm14/GLA-SE Schistosomiasis Vaccine: Overcoming Barriers
and Paradigms Towards the First Anti-Parasitic Human(itarian) Vaccine.
Trop Med Infect Dis (2018) 3(4):121. doi: 10.3390/tropicalmed3040121

114. Medicine/ClinicalTrials.gov USNLo. Safety and Immunogenicity Evaluation
of the Vaccine Candidate Sm14 in Combination With the Adjuvant
Glucopyranosyl Lipid A (GLA-SE) in Adults Living in Endemic Regions for
S. Mansoni and S. Haematobium in Senegal. A Comparative, Randomized,
Open-Label Trial [Nct03041766] (2016). Available at: https://clinicaltrials.
gov/ct2/show/NCT03041766?term=Sm14&cond=Schistosomiasis&rank=3
(Accessed Last accessed on 30/05/2021).

115. Medicine/ClinicalTrials.gov USNLo. Safety and Immunogenicity Evaluation
of the Vaccine Candidate Sm14 Against Schistosomiasis in Senegalese School
Children Healthy or Infected With S. Mansoni and/or S. Haematobium. A
Comparative, Randomized, Controlled, Open-Label Trial [Nct03799510]
(2018). Available at: https://clinicaltrials.gov/ct2/show/NCT03799510?
term=Sm14&cond=Schistosomiasis&rank=2 (Accessed Last accessed on
30/05/2021).

116. Siddiqui AA, Phillips T, Charest H, Podesta RB, Quinlin ML, Pinkston JR,
et al. Induction of Protective Immunity Against Schistosoma Mansoni via
DNA Priming and Boosting With the Large Subunit of Calpain (Sm-P80):
Adjuvant Effects of Granulocyte-Macrophage Colony-Stimulating Factor
and Interleukin-4. Infect Immun (2003) 71(7):3844–51. doi: 10.1128/
IAI.71.7.3844-3851.2003

117. Karcz SR, Podesta RB, Siddiqui AA, Dekaban GA, Strejan GH, Clarke MW.
Molecular Cloning and Sequence Analysis of a Calcium-Activated Neutral
Protease (Calpain) From Schistosoma Mansoni. Mol Biochem Parasitol
(1991) 49(2):333–6. doi: 10.1016/0166-6851(91)90078-K

118. Zhang W, Ahmad G, Torben W, Siddiqui AA. Sm-P80-Based DNA Vaccine
Made in a Human Use Approved Vector VR1020 Protects Against Challenge
Infection With Schistosoma Mansoni in Mouse. Parasite Immunol (2010) 32
(4):252–8. doi: 10.1111/j.1365-3024.2009.01181.x

119. Karmakar S, Zhang W, Ahmad G, Alam MU, Winn R, Torben W, et al.
Complement Plays a Minimal Role in Sm-P80-Mediated Protection Against
Schistosoma Mansoni. Hum Vaccin Immunother (2014) 10(3):640–7. doi:
10.4161/hv.27576

120. Siddiqui AA, Zhou Y, Podesta RB, Karcz SR, Tognon CE, Strejan GH, et al.
Characterization of Ca(2+)-Dependent Neutral Protease (Calpain) From
Human Blood Flukes, Schistosoma Mansoni. Biochim Biophys Acta (1993)
1181(1):37–44. doi: 10.1016/0925-4439(93)90087-H

121. Jankovic D, Aslund L, Oswald IP, Caspar P, Champion C, Pearce E, et al.
Calpain Is the Target Antigen of a Th1 Clone That Transfers Protective
Immunity Against Schistosoma Mansoni. J Immunol (1996) 157(2):806–14.

122. Molehin AJ, Sennoune SR, ZhangW, Rojo JU, Siddiqui AJ, Herrera KA, et al.
Cross-Species Prophylactic Efficacy of Sm-P80-Based Vaccine and
Intracellular Localization of Sm-P80/Sm-P80 Ortholog Proteins During
Development in Schistosoma Mansoni, Schistosoma Japonicum, and
Schistosoma Haematobium. Parasitol Res (2017) 116(11):3175–88. doi:
10.1007/s00436-017-5634-4
Frontiers in Tropical Diseases | www.frontiersin.org 15
123. Zhang W, Molehin AJ, Rojo JU, Sudduth J, Ganapathy PK, Kim E, et al. Sm-
P80-Based Schistosomiasis Vaccine: Double-Blind Preclinical Trial in
Baboons Demonstrates Comprehensive Prophylactic and Parasite
Transmission-Blocking Efficacy. Ann N Y Acad Sci (2018) 1425(1):38–51.
doi: 10.1111/nyas.13942

124. Hota-Mitchell S, Siddiqui AA, Dekaban GA, Smith J, Tognon C, Podesta RB.
Protection Against Schistosoma Mansoni Infection With a Recombinant
Baculovirus-Expressed Subunit of Calpain. Vaccine (1997) 15(15):1631–40.
doi: 10.1016/S0264-410X(97)00081-9

125. Karmakar S, Zhang W, Ahmad G, Torben W, Alam MU, Le L, et al. Cross-
Species Protection: Schistosoma Mansoni Sm-P80 Vaccine Confers
Protection Against Schistosoma Haematobium in Hamsters and Baboons.
Vaccine (2014) 32(11):1296–303. doi: 10.1016/j.vaccine.2013.12.057

126. Molehin AJ, Gray SA, Turner C, Davis J, Zhang W, Khatoon S, et al. Process
Development of Sj-P80: A Low-Cost Transmission-Blocking Veterinary
Vaccine for Asiatic Schistosomiasis. Front Immunol (2020) 11:578715. doi:
10.3389/fimmu.2020.578715

127. Hota-Mitchell S, Clarke MW, Podesta RB, Dekaban GA. Recombinant
Vaccinia Viruses and Gene Gun Vectors Expressing the Large Subunit of
Schistosoma Mansoni Calpain Used in a Murine Immunization-Challenge
Model. Vaccine (1999) 17(11-12):1338–54. doi: 10.1016/S0264-410X(98)
00391-0

128. Siddiqui AA, Pinkston JR, Quinlin ML, Kavikondala V, Rewers-Felkins KA,
Phillips T, et al. Characterization of Protective Immunity Induced Against
Schistosoma Mansoni via DNA Priming With the Large Subunit of Calpain
(Sm-P80) in the Presence of Genetic Adjuvants. Parasite (2005) 12(1):3–8.
doi: 10.1051/parasite/2005121003

129. Ahmad G, Torben W, Zhang W, Wyatt M, Siddiqui AA. Sm-P80-Based
DNA Vaccine Formulation Induces Potent Protective Immunity Against
Schistosoma Mansoni. Parasite Immunol (2009) 31(3):156–61. doi: 10.1111/
j.1365-3024.2008.01091.x

130. Ahmad G, Zhang W, Torben W, Noor Z, Siddiqui AA. Protective Effects of
Sm-P80 in the Presence of Resiquimod as an Adjuvant Against Challenge
Infection With Schistosoma Mansoni in Mice. Int J Infect Dis (2010) 14(9):
e781–7. doi: 10.1016/j.ijid.2010.02.2266

131. Siddiqui AA, Pinkston JR, Quinlin ML, Saeed Q, White GL, Shearer MH,
et al. Characterization of the Immune Response to DNA Vaccination
Strategies for Schistosomiasis Candidate Antigen, Sm-P80 in the Baboon.
Vaccine (2005) 23(12):1451–6. doi: 10.1016/j.vaccine.2004.09.018

132. Ahmad G, Zhang W, Torben W, Damian RT, Wolf RF, White GL, et al.
Protective and Antifecundity Effects of Sm-P80-Based DNA Vaccine
Formulation Against Schistosoma Mansoni in a Nonhuman Primate
Model. Vaccine (2009) 27(21):2830–7. doi: 10.1016/j.vaccine.2009.02.096

133. Zhang W, Ahmad G, Torben W, Noor Z, Le L, Damian RT, et al. Sm-P80-
Based DNA Vaccine Provides Baboons With Levels of Protection Against
Schistosoma Mansoni Infection Comparable to Those Achieved by the
Irradiated Cercarial Vaccine. J Infect Dis (2010) 201(7):1105–12. doi:
10.1086/651147

134. Zhang W, Ahmad G, Torben W, Siddiqui AA. Schistosoma Mansoni
Antigen Sm-P80: Prophylactic Efficacy of a Vaccine Formulated in Human
Approved Plasmid Vector and Adjuvant (VR 1020 and Alum). Acta Trop
(2011) 118(2):142–51. doi: 10.1016/j.actatropica.2011.01.010

135. TorbenW, Ahmad G, ZhangW, Siddiqui AA. Role of Antibodies in Sm-P80-
Mediated Protection Against Schistosoma Mansoni Challenge Infection in
Murine and Nonhuman Primate Models. Vaccine (2011) 29(12):2262–71.
doi: 10.1016/j.vaccine.2011.01.040

136. Zhang W, Le L, Ahmad G, Molehin AJ, Siddiqui AJ, Torben W, et al. Fifteen
Years of Sm-P80-Based Vaccine Trials in Nonhuman Primates: Antibodies
From Vaccinated Baboons Confer Protection In Vivo and In Vitro From
Schistosoma Mansoni and Identification of Putative Correlative Markers of
Protection. Front Immunol (2020) 11:1246. doi: 10.3389/fimmu.2020.01246

137. Torben W, Ahmad G, Zhang W, Nash S, Le L, Karmakar S, et al. Role of
Antibody Dependent Cell Mediated Cytotoxicity (ADCC) in Sm-P80-
Mediated Protection Against Schistosoma Mansoni. Vaccine (2012) 30
(48):6753–8. doi: 10.1016/j.vaccine.2012.09.026

138. Zhang W, Ahmad G, Le L, Rojo JU, Karmakar S, Tillery KA, et al. Longevity
of Sm-P80-Specific Antibody Responses Following Vaccination With Sm-
P80 Vaccine in Mice and Baboons and Transplacental Transfer of Sm-P80-
August 2021 | Volume 2 | Article 719369

https://doi.org/10.1016/j.actatropica.2005.05.007
https://doi.org/10.1186/1471-2334-14-263
https://clinicaltrials.gov/ct2/show/NCT01154049?term=Sm14&cond=Schistosomiasis&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT01154049?term=Sm14&cond=Schistosomiasis&amp;rank=1
https://doi.org/10.1016/j.vaccine.2015.10.027
https://doi.org/10.3390/tropicalmed3040121
https://clinicaltrials.gov/ct2/show/NCT03041766?term=Sm14&cond=Schistosomiasis&amp;rank=3
https://clinicaltrials.gov/ct2/show/NCT03041766?term=Sm14&cond=Schistosomiasis&amp;rank=3
https://clinicaltrials.gov/ct2/show/NCT03799510?term=Sm14&cond=Schistosomiasis&amp;rank=2
https://clinicaltrials.gov/ct2/show/NCT03799510?term=Sm14&cond=Schistosomiasis&amp;rank=2
https://doi.org/10.1128/IAI.71.7.3844-3851.2003
https://doi.org/10.1128/IAI.71.7.3844-3851.2003
https://doi.org/10.1016/0166-6851(91)90078-K
https://doi.org/10.1111/j.1365-3024.2009.01181.x
https://doi.org/10.4161/hv.27576
https://doi.org/10.1016/0925-4439(93)90087-H
https://doi.org/10.1007/s00436-017-5634-4
https://doi.org/10.1111/nyas.13942
https://doi.org/10.1016/S0264-410X(97)00081-9
https://doi.org/10.1016/j.vaccine.2013.12.057
https://doi.org/10.3389/fimmu.2020.578715
https://doi.org/10.1016/S0264-410X(98)00391-0
https://doi.org/10.1016/S0264-410X(98)00391-0
https://doi.org/10.1051/parasite/2005121003
https://doi.org/10.1111/j.1365-3024.2008.01091.x
https://doi.org/10.1111/j.1365-3024.2008.01091.x
https://doi.org/10.1016/j.ijid.2010.02.2266
https://doi.org/10.1016/j.vaccine.2004.09.018
https://doi.org/10.1016/j.vaccine.2009.02.096
https://doi.org/10.1086/651147
https://doi.org/10.1016/j.actatropica.2011.01.010
https://doi.org/10.1016/j.vaccine.2011.01.040
https://doi.org/10.3389/fimmu.2020.01246
https://doi.org/10.1016/j.vaccine.2012.09.026
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles


Panzner et al. Advances in Schistosomiasis Vaccines
Specific Antibodies in a Baboon. Parasitol Res (2014) 113(6):2239–50. doi:
10.1007/s00436-014-3879-8

139. Karmakar S, ZhangW, Ahmad G, TorbenW, AlamMU, Le L, et al. Use of an
Sm-P80-Based Therapeutic Vaccine to Kill Established Adult Schistosome
Parasites in Chronically Infected Baboons. J Infect Dis (2014) 209(12):1929–
40. doi: 10.1093/infdis/jiu031

140. Le L, Zhang W, Karmakar S, Ahmad G, Torben W, Siddiqui AA.
Simultaneous Priming With DNA Encoding Sm-P80 and Boosting With
Sm-P80 Protein Confers Protection Against Challenge Infection With
Schistosoma Mansoni in Mice. Parasitol Res (2014) 113(3):1195–200. doi:
10.1007/s00436-014-3757-4

141. Le L, Molehin AJ, Nash S, Sennoune SR, Ahmad G, Torben W, et al.
Schistosoma Egg-Induced Liver Pathology Resolution by Sm-P80-Based
Schistosomiasis Vaccine in Baboons. Pathology (2018) 50(4):442–9. doi:
10.1016/j.pathol.2018.01.004

142. Siddiqui AJ, Molehin AJ, Zhang W, Ganapathy PK, Kim E, Rojo JU, et al.
Sm-P80-Based Vaccine Trial in Baboons: Efficacy When Mimicking Natural
Conditions of Chronic Disease, Praziquantel Therapy, Immunization, and
Schistosoma Mansoni Re-Encounter. Ann N Y Acad Sci (2018) 1425(1):19–
37. doi: 10.1111/nyas.13866

143. Capron A, Riveau G, Capron M, Trottein F. Schistosomes: The Road From
Host-Parasite Interactions to Vaccines in Clinical Trials. Trends Parasitol
(2005) 21(3):143–9. doi: 10.1016/j.pt.2005.01.003

144. Johnson KA, Angelucci F, Bellelli A, Herve M, Fontaine J, Tsernoglou D,
et al. Crystal Structure of the 28 kDa Glutathione S-Transferase From
Schistosoma Haematobium. Biochemistry (2003) 42(34):10084–94. doi:
10.1021/bi034449r

145. Trottein F, Godin C, Pierce RJ, Sellin B, Taylor MG, Gorillot I, et al. Inter-
Species Variation of Schistosome 28-kDa Glutathione S-Transferases. Mol
Biochem Parasitol (1992) 54(1):63–72. doi: 10.1016/0166-6851(92)90095-2

146. Bourke CD, Nausch N, Rujeni N, Appleby LJ, Trottein F, Midzi N, et al.
Cytokine Responses to the Anti-Schistosome Vaccine Candidate Antigen
Glutathione-S-Transferase Vary With Host Age and Are Boosted by
Praziquantel Treatment. PloS Negl Trop Dis (2014) 8(5):e2846. doi:
10.1371/journal.pntd.0002846

147. Boulanger D, Warter A, Trottein F, Mauny F, Bremond P, Audibert F, et al.
Vaccination of Patas Monkeys Experimentally Infected With Schistosoma
Haematobium Using a Recombinant Glutathione S-Transferase Cloned
From S. Mansoni. Parasite Immunol (1995) 17(7):361–9. doi: 10.1111/
j.1365-3024.1995.tb00903.x

148. Boulanger D, Warter A, Sellin B, Lindner V, Pierce RJ, Chippaux JP, et al.
Vaccine Potential of a Recombinant Glutathione S-Transferase Cloned From
Schistosoma Haematobium in Primates Experimentally Infected With an
Homologous Challenge. Vaccine (1999) 17(4):319–26. doi: 10.1016/S0264-
410X(98)00202-3

149. Lee JJ, Sinha KA, Harrison JA, de Hormaeche RD, Riveau G, Pierce RJ, et al.
Tetanus Toxin Fragment C Expressed in Live Salmonella Vaccines Enhances
Antibody Responses to its Fusion Partner Schistosoma Haematobium
Glutathione S-Transferase. Infect Immun (2000) 68(5):2503–12. doi:
10.1128/IAI.68.5.2503-2512.2000

150. Scott JC, McManus DP. Molecular Cloning and Enzymatic Expression of the
28-kDa Glutathione S-Transferase of Schistosoma Japonicum: Evidence for
Sequence Variation But Lack of Consistent Vaccine Efficacy in the Murine
Host. Parasitol Int (2000) 49(4):289–300. doi: 10.1016/S1383-5769(00)
00058-1

151. Mitchell GF. Glutathione S-Transferases - Potential Components of Anti-
Schistosome Vaccines? Parasitol Today (1989) 5(2):34–7. doi: 10.1016/0169-
4758(89)90185-3

152. Mutapi F, Burchmore R, Mduluza T, Foucher A, Harcus Y, Nicoll G, et al.
Praziquantel Treatment of Individuals Exposed to Schistosoma
Haematobium Enhances Serological Recognition of Defined Parasite
Antigens. J Infect Dis (2005) 192(6):1108–18. doi: 10.1086/432553

153. Xu CB, Verwaerde C, Grzych JM, Fontaine J, Capron A. A Monoclonal
Antibody Blocking the Schistosoma Mansoni 28-kDa Glutathione S-
Transferase Activity Reduces Female Worm Fecundity and Egg Viability.
Eur J Immunol (1991) 21(8):1801–7. doi: 10.1002/eji.1830210804

154. McTigue MA, Williams DR, Tainer JA. Tainer, Crystal Structures of a
Schistosomal Drug and Vaccine Target: Glutathione S-Transferase From
Frontiers in Tropical Diseases | www.frontiersin.org 16
Schistosoma Japonica and its Complex With the Leading Antischistosomal
Drug Praziquantel. J Mol Biol (1995) 246(1):21–7. doi: 10.1006/
jmbi.1994.0061

155. Milhon JL, Thiboldeaux RL, Glowac K, Tracy JW. Schistosoma Japonicum
GSH S-Transferase Sj26 Is Not the Molecular Target of Praziquantel Action.
Exp Parasitol (1997) 87(3):268–74. doi: 10.1006/expr.1997.4231

156. Webbe G, James C, Nelson GS, Ismail MM, Shaw JR. Cross Resistance
Between Schistosoma Haematobium and S. Mansoni in the Baboon. Trans R
Soc Trop Med Hyg (1979) 73(1):42–54. doi: 10.1016/0035-9203(79)90128-7

157. Chippaux JP. [The Center for Research on Meningitis and Schistosomiasis
(CERMES), Naimey, Niger]. Med Trop (Mars) (1998) 58(2):199–203.

158. Wolowczuk I, Auriault C, Bossus M, Boulanger D, Gras-Masse H, Mazingue
C, et al. Antigenicity and Immunogenicity of a Multiple Peptidic
Construction of the Schistosoma Mansoni Sm-28 GST Antigen in Rat,
Mouse, and Monkey. 1. Partial Protection of Fischer Rat After Active
Immunization. J Immunol (1991) 146(6):1987–95.

159. Grezel D, Capron M, Grzych JM, Fontaine J, Lecocq JP, Capron A. Protective
Immunity Induced in Rat Schistosomiasis by a Single Dose of the Sm28GST
Recombinant Antigen: Effector Mechanisms Involving IgE and IgA
Antibodies. Eur J Immunol (1993) 23(2):454–60. doi: 10.1002/eji.1830230223

160. Lane A, Boulanger D, Riveau G, Capron A, Wilson RA. Murine Immune
Responses to Schistosoma Haematobium and the Vaccine Candidate
rSh28GST. Parasite Immunol (1998) 20(8):359–67.

161. Auriault C, Gras-Masse H, Pierce RJ, Butterworth AE,Wolowczuk I, CapronM,
et al. Antibody Response of Schistosoma Mansoni-Infected Human Subjects to
the Recombinant P28 Glutathione-S-Transferase and to Synthetic Peptides. J
Clin Microbiol (1990) 28(9):1918–24. doi: 10.1128/jcm.28.9.1918-1924.1990

162. Pierce RJ, Balloul JM, Grzych JM, Dissous C, Auriault C, Boulanger D, et al.
GP38, P28-I and P28-II: Candidates for a Vaccine Against Schistosomiasis.
Mem Inst Oswaldo Cruz (1987) 82(Suppl 4):111–4. doi: 10.1590/S0074-
02761987000800018

163. Ndhlovu P, Cadman H, Vennervald BJ, Christensen NO, Chidimu M,
Chandiwana SK. Age-Related Antibody Profiles in Schistosoma
Haematobium Infections in a Rural Community in Zimbabwe. Parasite
Immunol (1996) 18(4):181–91. doi: 10.1046/j.1365-3024.1996.d01-78.x

164. Riveau G, Poulain-Godefroy OP, Dupre L, Remoue F, Mielcarek N, Locht C,
et al. Glutathione S-Transferases of 28kDa as Major Vaccine Candidates
Against Schistosomiasis. Mem Inst Oswaldo Cruz (1998) 93(Suppl 1):87–94.
doi: 10.1590/S0074-02761998000700012

165. Kremer L, Dupre L, Riveau G, Capron A, Locht C. Systemic and Mucosal
Immune Responses After Intranasal Administration of Recombinant
Mycobacterium Bovis Bacillus Calmette-Guerin Expressing Glutathione S-
Transferase From Schistosoma Haematobium. Infect Immun (1998) 66
(12):5669–76. doi: 10.1128/IAI.66.12.5669-5676.1998

166. Kremer L, Riveau G, Baulard A, Capron A, Locht C. Neutralizing Antibody
Responses Elicited in Mice Immunized With Recombinant Bacillus
Calmette-Guerin Producing the Schistosoma Mansoni Glutathione S-
Transferase. J Immunol (1996) 156(11):4309–17.

167. Dupre L, Poulain-Godefroy O, Ban E, Ivanoff N, Mekranfar M, Schacht AM,
et al. Intradermal Immunization of Rats With Plasmid DNA Encoding
Schistosoma Mansoni 28 kDa Glutathione S-Transferase. Parasite Immunol
(1997) 19(11):505–13. doi: 10.1046/j.1365-3024.1997.d01-163.x

168. Riveau G, Deplanque D, Remoue F, Schacht AM, Vodougnon H, Capron M, et al.
Safety and Immunogenicity of rSh28GST Antigen in Humans: Phase 1 Randomized
Clinical Study of aVaccine Candidate Against Urinary Schistosomiasis.PloSNegl Trop
Dis (2012) 6(7):e1704. doi: 10.1371/journal.pntd.0001704

169. Medicine/Clinical/Trial.gov USNLo. Phase 1 Study Evaluating Safety and
Immunological Criteria of Efficacy of the Recombinant Vaccine Candidate
Bilhvax Against Schistosomiasis [Nct01512277] (1999). Available at: https://
clinicaltrials.gov/ct2/show/NCT01512277?term=rsh28GST&cond=
Schistosomiasis&draw=2&rank=1 (Accessed Last accessed on 30/05/2021).

170. Capron A, Capron M, Dombrowicz D, Riveau G. Vaccine Strategies Against
Schistosomiasis: From Concepts to Clinical Trials. Int Arch Allergy Immunol
(2001) 124(1-3):9–15. doi: 10.1159/000053656

171. Riveau G, Schacht AM, Dompnier JP, Deplanque D, Seck M, Waucquier N,
et al. Safety and Efficacy of the rSh28GST Urinary Schistosomiasis Vaccine:
A Phase 3 Randomized, Controlled Trial in Senegalese Children. PloS Negl
Trop Dis (2018) 12(12):e0006968. doi: 10.1371/journal.pntd.0006968
August 2021 | Volume 2 | Article 719369

https://doi.org/10.1007/s00436-014-3879-8
https://doi.org/10.1093/infdis/jiu031
https://doi.org/10.1007/s00436-014-3757-4
https://doi.org/10.1016/j.pathol.2018.01.004
https://doi.org/10.1111/nyas.13866
https://doi.org/10.1016/j.pt.2005.01.003
https://doi.org/10.1021/bi034449r
https://doi.org/10.1016/0166-6851(92)90095-2
https://doi.org/10.1371/journal.pntd.0002846
https://doi.org/10.1111/j.1365-3024.1995.tb00903.x
https://doi.org/10.1111/j.1365-3024.1995.tb00903.x
https://doi.org/10.1016/S0264-410X(98)00202-3
https://doi.org/10.1016/S0264-410X(98)00202-3
https://doi.org/10.1128/IAI.68.5.2503-2512.2000
https://doi.org/10.1016/S1383-5769(00)00058-1
https://doi.org/10.1016/S1383-5769(00)00058-1
https://doi.org/10.1016/0169-4758(89)90185-3
https://doi.org/10.1016/0169-4758(89)90185-3
https://doi.org/10.1086/432553
https://doi.org/10.1002/eji.1830210804
https://doi.org/10.1006/jmbi.1994.0061
https://doi.org/10.1006/jmbi.1994.0061
https://doi.org/10.1006/expr.1997.4231
https://doi.org/10.1016/0035-9203(79)90128-7
https://doi.org/10.1002/eji.1830230223
https://doi.org/10.1128/jcm.28.9.1918-1924.1990
https://doi.org/10.1590/S0074-02761987000800018
https://doi.org/10.1590/S0074-02761987000800018
https://doi.org/10.1046/j.1365-3024.1996.d01-78.x
https://doi.org/10.1590/S0074-02761998000700012
https://doi.org/10.1128/IAI.66.12.5669-5676.1998
https://doi.org/10.1046/j.1365-3024.1997.d01-163.x
https://doi.org/10.1371/journal.pntd.0001704
https://clinicaltrials.gov/ct2/show/NCT01512277?term=rsh28GST&cond=Schistosomiasis&amp;draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT01512277?term=rsh28GST&cond=Schistosomiasis&amp;draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT01512277?term=rsh28GST&cond=Schistosomiasis&amp;draw=2&amp;rank=1
https://doi.org/10.1159/000053656
https://doi.org/10.1371/journal.pntd.0006968
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles


Panzner et al. Advances in Schistosomiasis Vaccines
172. Medicine/ClinicalTrials.gov USNLo. Efficacy and Safety Evaluation of the
Therapeutic Vaccine Candidate Sh28GST in Association With Praziquantel
(PZQ) for Prevention of Clinical and Parasitological Recurrences of S.
Haematobium Infection in Children [Nct00870649] (2012). Available at:
https://clinicaltrials.gov/ct2/show/NCT00870649?term=sh28GST&cond=
Schistosomiasis&draw=2&rank=1 (Accessed Last accessed on 30/05/2021).

173. Remoue F, To Van D, Schacht AM, Picquet M, Garraud O, Vercruysse J,
et al. Gender-Dependent Specific Immune Response During Chronic
Human Schistosomiasis Haematobia. Clin Exp Immunol (2001) 124(1):62–
8. doi: 10.1046/j.1365-2249.2001.01495.x

174. Mutapi F, Mduluza T, Gomez-Escobar N, Gregory WF, Fernandez C, Midzi
N, et al. Immuno-Epidemiology of Human Schistosoma Haematobium
Infection: Preferential IgG3 Antibody Responsiveness to a Recombinant
Antigen Dependent on Age and Parasite Burden. BMC Infect Dis (2006) 6:96.
doi: 10.1186/1471-2334-6-96

175. Wilson RA, Li XH, Castro-BorgesW. Do Schistosome Vaccine Trials in Mice
Have an Intrinsic Flaw That Generates Spurious Protection Data? Parasit
Vectors (2016) 9:89. doi: 10.1186/s13071-016-1369-9

176. Bourke CD, Nausch N, Rujeni N, Appleby LJ, Mitchell KM, Midzi N, et al.
Integrated Analysis of Innate, Th1, Th2, Th17, and Regulatory Cytokines
Identifies Changes in Immune Polarisation Following Treatment of Human
Schistosomiasis. J Infect Dis (2013) 208(1):159–69. doi: 10.1093/infdis/jis524

177. Melkus MW, Le L, Siddiqui AJ, Molehin AJ, Zhang W, Lazarus S, et al.
Elucidation of Cellular Responses in Non-Human Primates With Chronic
Schistosomiasis Followed by Praziquantel Treatment. Front Cell Infect
Microbiol (2020) 10:57. doi: 10.3389/fcimb.2020.00057

178. Gaze S, Driguez P, Pearson MS, Mendes T, Doolan DL, Trieu A, et al. An
Immunomics Approach to Schistosome Antigen Discovery: Antibody
Signatures of Naturally Resistant and Chronically Infected Individuals
From Endemic Areas. PloS Pathog (2014) 10(3):e1004033. doi: 10.1371/
journal.ppat.1004033

179. Egesa M, Lubyayi L, Jones FM, van Diepen A, Chalmers IW, Tukahebwa EM,
et al. Antibody Responses to Schistosoma Mansoni Schistosomula Antigens.
Parasite Immunol (2018) 40(12):e12591. doi: 10.1111/pim.12591

180. Lin L, Finak G, Ushey K, Seshadri C, Hawn TR, Frahm N, et al. COMPASS
Identifies T-Cell Subsets Correlated With Clinical Outcomes. Nat Biotechnol
(2015) 33(6):610–6. doi: 10.1038/nbt.3187

181. Elliott AM, Roestenberg M, Wajja A, Opio C, Angumya F, Adriko M, et al.
Ethical and Scientific Considerations on the Establishment of a Controlled
Human Infection Model for Schistosomiasis in Uganda: Report of a
Stakeholders’ Meeting Held in Entebbe, Uganda. AAS Open Res (2018) 1:2.
doi: 10.12688/aasopenres.12841.2

182. Koopman JP, Egesa M, Wajja A, Adriko M, Nassuuna J, Nkurunungi G, et al.
Risk Assessment for the Implementation of Controlled Human Schistosoma
Mansoni Infection Trials in Uganda. AAS Open Res (2019) 2:17. doi:
10.12688/aasopenres.12972.1

183. Langenberg MCC, Hoogerwerf MA, Koopman JPR, Janse JJ, Kos-van
Oosterhoud J, Feijt C, et al. A Controlled Human Schistosoma Mansoni
Frontiers in Tropical Diseases | www.frontiersin.org 17
Infection Model to Advance Novel Drugs, Vaccines and Diagnostics. Nat
Med (2020) 26(3):326–32. doi: 10.1038/s41591-020-0759-x

184. Tedla BA, Pickering D, Becker L, Loukas A, Pearson MS. Vaccination With
Schistosoma Mansoni Cholinesterases Reduces the Parasite Burden and Egg
Viability in a Mouse Model of Schistosomiasis. Vaccines (Basel) (2020) 8(2).
doi: 10.3390/vaccines8020162

185. Pearson MS, Becker L, Driguez P, Young ND, Gaze S, Mendes T, et al. Of
Monkeys and Men: Immunomic Profiling of Sera From Humans and non-
Human Primates Resistant to Schistosomiasis Reveals Novel Potential Vaccine
Candidates. Front Immunol (2015) 6:213. doi: 10.3389/fimmu.2015.00213

186. De Sousa KP, Doolan DL. Immunomics: A 21st Century Approach to
Vaccine Development for Complex Pathogens. Parasitology (2016) 143
(2):236–44. doi: 10.1017/S0031182015001079

187. Pinheiro CS, Martins VP, Assis NR, Figueiredo BC, Morais SB, Azevedo V,
et al. Computational Vaccinology: An Important Strategy to Discover New
Potential S. Mansoni Vaccine Candidates. J BioMed Biotechnol (2011)
2011:503068. doi: 10.1155/2011/503068

188. Castro-Borges W, Dowle A, Curwen RS, Thomas-Oates J, Wilson RA.
Enzymatic Shaving of the Tegument Surface of Live Schistosomes for
Proteomic Analysis: A Rational Approach to Select Vaccine Candidates.
PloS Negl Trop Dis (2011) 5(3):e993. doi: 10.1371/journal.pntd.0000993

189. Molehin AJ. Schistosomiasis Vaccine Development: Update on Human
Clinical Trials. J BioMed Sci (2020) 27(1):28. doi: 10.1186/s12929-020-0621-y

Author Disclaimer: The findings and conclusions of this review are those of the
authors and do not necessarily represent official funder or institutional positions.

Conflict of Interest: DC is an inventor of the GLA-based adjuvants GLA-AF,
GLA-Alum, and GLA-SE and CEO of PAI Life Sciences Inc. which has a license to
SchistoShield®. AS is an inventor of the Sm-p80 antigen.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Panzner, Excler, Kim, Marks, Carter and Siddiqui. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
August 2021 | Volume 2 | Article 719369

https://clinicaltrials.gov/ct2/show/NCT00870649?term=sh28GST&cond=Schistosomiasis&amp;draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT00870649?term=sh28GST&cond=Schistosomiasis&amp;draw=2&amp;rank=1
https://doi.org/10.1046/j.1365-2249.2001.01495.x
https://doi.org/10.1186/1471-2334-6-96
https://doi.org/10.1186/s13071-016-1369-9
https://doi.org/10.1093/infdis/jis524
https://doi.org/10.3389/fcimb.2020.00057
https://doi.org/10.1371/journal.ppat.1004033
https://doi.org/10.1371/journal.ppat.1004033
https://doi.org/10.1111/pim.12591
https://doi.org/10.1038/nbt.3187
https://doi.org/10.12688/aasopenres.12841.2
https://doi.org/10.12688/aasopenres.12972.1
https://doi.org/10.1038/s41591-020-0759-x
https://doi.org/10.3390/vaccines8020162
https://doi.org/10.3389/fimmu.2015.00213
https://doi.org/10.1017/S0031182015001079
https://doi.org/10.1155/2011/503068
https://doi.org/10.1371/journal.pntd.0000993
https://doi.org/10.1186/s12929-020-0621-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles

	Recent Advances and Methodological Considerations on Vaccine Candidates for Human Schistosomiasis
	Introduction
	Disease Burden
	Parasite Pathogenicity
	Host Immunity
	Prevention and Treatment

	Advanced Vaccine Candidates
	S. mansoni Tetraspanin: Sm-TSP-2/Sm-TSP-2/Al&reg;
	S. mansoni Fatty Acid-Binding Protein: Sm14
	S. mansoni Large-Subunit Calpain: Sm-p80/SchistoShield&reg;
	S. haematobium Glutathione S-Transferase: Sh28GST (Bilharvax&reg;)

	Methodological Considerations
	Animal Models and Predictive Value of Protection in Humans
	Parasitological Assessments
	Immune Response Assessment and PZQ Impact
	Controlled Human Infection Model

	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


