8 research outputs found

    Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa—Chromosomal Monophyly and Broad Geographic Distribution

    Get PDF
    Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d’Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans

    Primate phageomes are structured by superhost phylogeny and environment

    No full text
    Humans harbor diverse communities of microorganisms, the majority of which are bacteria in the gastrointestinal tract. These gut bacterial communities in turn host diverse bacteriophage (hereafter phage) communities that have a major impact on their structure, function, and, ultimately, human health. However, the evolutionary and ecological origins of these human-associated phage communities are poorly understood. To address this question, we examined fecal phageomes of 23 wild nonhuman primate taxa, including multiple representatives of all the major primate radiations. We find relatives of the majority of human-associated phages in wild primates. Primate taxa have distinct phageome compositions that exhibit a clear phylosymbiotic signal, and phage–superhost codivergence is often detected for individual phages. Within species, neighboring social groups harbor compositionally and evolutionarily distinct phageomes, which are structured by superhost social behavior. Captive nonhuman primate phageome composition is intermediate between that of their wild counterparts and humans. Phage phylogenies reveal replacement of wild great ape–associated phages with human-associated ones in captivity and, surprisingly, show no signal for the persistence of wild-associated phages in captivity. Together, our results suggest that potentially labile primate-phage associations have persisted across millions of years of evolution. Across primates, these phylosymbiotic and sometimes codiverging phage communities are shaped by transmission between groupmates through grooming and are dramatically modified when primates are moved into captivity

    Primate phageomes are structured by superhost phylogeny and environment

    No full text
    Humans harbor diverse communities of microorganisms, the majority of which are bacteria in the gastrointestinal tract. These gut bacterial communities in turn host diverse bacteriophage (hereafter phage) communities that have a major impact on their structure, function, and, ultimately, human health. However, the evolutionary and ecological origins of these human-associated phage communities are poorly understood. To address this question, we examined fecal phageomes of 23 wild nonhuman primate taxa, including multiple representatives of all the major primate radiations. We find relatives of the majority of human-associated phages in wild primates. Primate taxa have distinct phageome compositions that exhibit a clear phylosymbiotic signal, and phage–superhost codivergence is often detected for individual phages. Within species, neighboring social groups harbor compositionally and evolutionarily distinct phageomes, which are structured by superhost social behavior. Captive nonhuman primate phageome composition is intermediate between that of their wild counterparts and humans. Phage phylogenies reveal replacement of wild great ape–associated phages with human-associated ones in captivity and, surprisingly, show no signal for the persistence of wild-associated phages in captivity. Together, our results suggest that potentially labile primate-phage associations have persisted across millions of years of evolution. Across primates, these phylosymbiotic and sometimes codiverging phage communities are shaped by transmission between groupmates through grooming and are dramatically modified when primates are moved into captivity

    Maximum likelihood tree based on core chromosomal SNP data.

    No full text
    <p>A: Full tree. B: Zoom-in focused on the <i>Bacillus cereus</i> biovar anthracis clade. <i>Bacillus anthracis</i> sequences are black, <i>Bacillus cereus</i> and <i>Bacillus thuringiensis</i> red and <i>B</i>. <i>cereus</i> bv anthracis blue. Branch support values were estimated by approximate likelihood ratio tests and are only reported for these internal branches not supported by maximal values. This tree was rooted with TempEst v1.5.</p

    Maximum likelihood tree based on core plasmid SNP data.

    No full text
    <p>A: pXO1. B: pXO2. <i>Bacillus anthracis</i> sequences are black, <i>Bacillus cereus</i> red and <i>Bacillus cereus</i> biovar anthracis blue. Branch support values were estimated by approximate likelihood ratio tests and are only reported for these internal branches not supported by maximal values. The trees were rooted with TempEst v1.5.</p
    corecore