33 research outputs found

    Failed immune responses across multiple pathologies share pan-tumor and circulating lymphocytic targets

    Get PDF
    Tumor-infiltrating lymphocytes (TILs) are widely associated with positive outcomes, yet carry key indicators of a systemic failed immune response against unresolved cancer. Cancer immunotherapies can reverse their tolerance phenotypes while preserving tumor reactivity and neoantigen specificity shared with circulating immune cells. We performed comprehensive transcriptomic analyses to identify gene signatures common to circulating and TILs in the context of clear cell renal cell carcinoma. Modulated genes also associated with disease outcome were validated in other cancer types. Through comprehensive bioinformatics analyses, we identified practical diagnostic markers and actionable targets of the failed immune response. On circulating lymphocytes, 3 genes (LEF1, FASLG, and MMP9) could efficiently stratify patients from healthy control donors. From their associations with resistance to cancer immunotherapies and microbial infections, we uncovered not only pan-cancer, but pan-pathology, failed immune response profiles. A prominent lymphocytic matrix metallopeptidase cell migration pathway is central to a panoply of diseases and tumor immunogenicity, correlates with multi-cancer recurrence, and identifies a feasible noninvasive approach to pan-pathology diagnoses. The differentially expressed genes we have identified warrant future investigation into the development of their potential in noninvasive precision diagnostics and precision pan-disease immunotherapeutics. - 2019, American Society for Clinical Investigation.We thank all study participants and patients; The Cancer Genome Atlas; Mathieu Latour and Roula Albadine and supporting staff of the CHUM pathology department; Manon de Ladurantaye and Anne-Marie Mes-Masson from the CRCHUM for RNA quality profiling, Geneviève Cormier and Fred Saad from the CRCHUM for drawing blood from control donors; Gilles Corbeil of the CRCHUM genomics department for RNA quality testing and microarray profiling; Francois Harvey of the CRCHUM bioinformatics department; Peter Graf and Patrick Sabourin from Affymetrix for providing reagents and technical assistance; Zeeshan Farroq and Ofir Goldberger from Fluidigm; Erika Diaz from StemCell; Andrew Mouland from McGill University; Simon Turcotte from University of Montreal; and Sascha Ring from Biostars for their advice. This work was partially performed at the Institut du Cancer de Montréal CRCHUM and University of Montreal, in Montreal, Quebec, Canada. This work was supported by a Canadian Cancer Society Research Institute grant (CCSRI) (702036, to RL and IJ) and a Biomedical Research Grant from the Kidney Foundation of Canada (KFOC130019 to RL). RL is supported by the Quebec Cell, Tissue and Gene Therapy Network—ThéCell (a thematic network supported by the Fonds de recherche du Québec–Santé [FRQS]), the FRQS, and the Immunotherapy Network (iTNT) from the Terry Fox Research Institute (TFRI), A. Monette is supported by Mitacs, Merck, l’Institut du cancer de Montréal (ICM), the Society for Immunotherapy of Cancer, and the Lady Davis Institute for Medical Research. NAB is supported by the FRQS post-doctoral award and Qatar University. JBL is supported by l’Institut du Cancer de Montréal. JPR holds the Louis Lowenstein Chair, McGill University. DEK is supported by an FRQS Research Scholar Award (grant 31035), CIHR 377124, NHLBI RO1-HL-092565, and the Canada Foundation for Innovation (CFI) (grant 31756). IJ and computational analysis were supported by the Canada Research Chair Program (CRC) (grant 225404), Ontario Research Fund (grant 34876), the Natural Sciences Research Council (NSERC) (grant 203475), the CFI (grants 203373 and 30865), the Krembil Foundation, and IBM.Scopu

    Resident pleural macrophages are key orchestrators of neutrophil recruitment in pleural inflammation

    Get PDF
    Rationale: The role played by resident pleural macrophages in the initiation of pleural inflammation is currently unclear. Objective: To evaluate the role of resident pleural macrophages in the initiation of inflammation. Methods: We have used a conditional macrophage ablation strategy to determine the role of resident pleural macrophages in the regulation of neutrophil recruitment in a murine model of experimental pleurisy induced by the administration of carrageenan and formalin- fixed Staphylococcus aureus. Measurements and Main Results: Conditional macrophage ablation mice express the human diphtheria toxin receptor under the control of the CD11b promoter such that the administration of diphtheria toxin induces ablation of nearly 97% of resident macrophages. Ablation of resident pleural macrophages before the administration of carrageenan or S. aureus dramatically reduced neutrophil influx into the pleural cavity. In the carrageenan model, the reduction in neutrophil infiltration was associated with marked early reduction in the level of macrophage inflammatory protein 2 as well as reduced levels of various cytokines, including tumor necrosis factor α, interleukin 6, and interleukin 10. Adoptive transfer of nontransgenic macrophages partially restored neutrophil infiltration. We also stimulated macrophage-depleted and nondepleted pleural cell populations with carrageenan in vitro and determined the production of chemokines and cytokines. Chemokine and cytokine production was markedly reduced by macrophage depletion, reinforcing the role of resident pleural macrophages in the generation of mediators that initiate acute inflammation. Conclusion: These studies indicate a critical role for resident pleural macrophages in sensing perturbation to the local microenvironment and orchestrating subsequent neutrophil infiltration

    Conditional Ablation of Macrophages Halts Progression of Crescentic Glomerulonephritis

    Get PDF
    The presence of macrophages in inflamed glomeruli of rat kidney correlates with proliferation and apoptosis of resident glomerular mesangial cells. We assessed the contribution of inflammatory macrophages to progressive renal injury in murine crescentic glomerulonephritis (GN). Using a novel transgenic mouse (CD11b-DTR) in which tissue macrophages can be specifically and selectively ablated by minute injections of diphtheria toxin, we depleted renal inflammatory macrophages through days 15 and 20 of progressive crescentic GN. Macrophage depletion reduced the number of glomerular crescents, improved renal function, and reduced proteinuria. Morphometric analysis of renal tubules and interstitium revealed a marked attenuation of tubular injury that was associated with reduced proliferation and apoptosis of tubular cells. The population of interstitial myofibroblasts decreased after macrophage depletion and interstitial fibrosis also decreased. In the presence of macrophages, interstitial myofibroblasts exhibited increased levels of both proliferation and apoptosis, suggesting that macrophages act to support a population of renal myofibroblasts in a high turnover state and in matrix deposition. Finally, deletion of macrophages reduced CD4 T cells in the diseased kidney. This study demonstrates that macrophages are key effectors of disease progression in crescentic GN, acting to regulate parenchymal cell populations by modulating both cell proliferation and apoptosis

    The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection

    Get PDF
    Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)–incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation

    BTN3A2 Expression in Epithelial Ovarian Cancer Is Associated with Higher Tumor Infiltrating T Cells and a Better Prognosis

    Get PDF
    BTN3A2/BT3.2 butyrophilin mRNA expression by tumoral cells was previously identified as a prognostic factor in a small cohort of high grade serous epithelial ovarian cancer (HG-EOC). Here, we evaluated the prognostic value of BT3.2 at the protein level in specimen from 199 HG-EOC patients. As the only known role of butyrophilin proteins is in immune regulation, we evaluated the association between BT3.2 expression and intratumoral infiltration of immune cells by immunohistochemistry with specific antibodies against BT3.2, CD3, CD4, CD8, CD20, CD68 and CD206. Epithelial BT3.2 expression was significantly associated with longer overall survival and lower risk of disease progression (HR = 0.651, p = 0.006 and HR = 0.642, p = 0.002, respectively) and significantly associated with a higher density of infiltrating T cells, particularly CD4+ cells (0.272, p<0.001). We also observed a strong association between the relative density of CD206+ cells, as evaluated by the ratio of intratumoral CD206+/CD68+ expression, and risk of disease progression (HR = 1.355 p = 0.044, respectively). In conclusion, BT3.2 protein is a potential prognostic biomarker for the identification of HG-EOC patients with better outcome. In contrast, high CD206+/CD68+ expression is associated with high risk of disease progression. While the role of BT3.2 is still unknown, our result suggest that BT3.2 expression by epithelial cells may modulates the intratumoral infiltration of immune cells

    MFG-E8 Released by Apoptotic Endothelial Cells Triggers Anti-Inflammatory Macrophage Reprogramming

    Get PDF
    Apoptotic endothelial cells are an important component of the ‘‘response to injury’ ’ process. Several atherosclerosis risk factors such as hyperglycemia and oxidized low-density lipoproteins, and immune injuries, such as antibodies and complement, induce endothelial cell apoptosis. While endothelial cell apoptosis is known to affect neighboring vascular wall cell biology, its consequences on macrophage reprogramming are ill defined. In this study, we report that apoptosis of human and mouse endothelial cells triggers the release of milk fat globule-epidermal growth factor 8 (MFG-E8) and reprograms macrophages into an anti-inflammatory cells. We demonstrated that MFG-E8 is released by apoptotic endothelial cells in a caspase-3-dependent manner. When macrophages were exposed to conditioned media from serumstarved apoptotic endothelial cells, they adopt a high anti-inflammatory, low pro-inflammatory cytokine/chemokine secreting phenotype that is lost if MFG-E8 is absent from the media. Macrophage treatment with recombinant MFG-E8 recapitulates the effect of conditioned media. Finally, we showed that MFG-E8-mediated reprogramming of macrophages occurs through increased phosphorylation of signal transducer and activator of transcription-3 (STAT-3). Taken together, our study suggests a key role of MFG-E8 release from apoptotic endothelial cells in macrophage reprogramming an

    High Levels of MFG-E8 Confer a Good Prognosis in Prostate and Renal Cancer Patients

    No full text
    Milk fat globule-epidermal growth factor-8 (MFG-E8) is a glycoprotein secreted by different cell types, including apoptotic cells and activated macrophages. MFG-E8 is highly expressed in a variety of cancers and is classically associated with tumor growth and poor patient prognosis through reprogramming of macrophages into the pro-tumoral/pro-angiogenic M2 phenotype. To date, correlations between levels of MFG-E8 and patient survival in prostate and renal cancers remain unclear. Here, we quantified MFG-E8 and CD68/CD206 expression by immunofluorescence staining in tissue microarrays constructed from renal (n = 190) and prostate (n = 274) cancer patient specimens. Percentages of MFG-E8-positive surface area were assessed in each patient core and Kaplan–Meier analyses were performed accordingly. We found that MFG-E8 was expressed more abundantly in malignant regions of prostate tissue and papillary renal cell carcinoma but was also increased in the normal adjacent regions in clear cell renal carcinoma. In addition, M2 tumor-associated macrophage staining was increased in the normal adjacent tissues compared to the malignant areas in renal cancer patients. Overall, high tissue expression of MFG-E8 was associated with less disease progression and better survival in prostate and renal cancer patients. Our observations provide new insights into tumoral MFG-E8 content and macrophage reprogramming in cancer

    MFG-E8 Reduces Aortic Intimal Proliferation in a Murine Model of Transplant Vasculopathy

    No full text
    Transplant vasculopathy is characterized by endothelial apoptosis, which modulates the local microenvironment. Milk fat globule epidermal growth factor 8 (MFG-E8), which is released by apoptotic endothelial cells, limits tissue damage and inflammation by promoting anti-inflammatory macrophages. We aimed to study its role in transplant vasculopathy using the murine aortic allotransplantation model. BALB/c mice were transplanted with fully mismatched aortic transplants from MFG-E8 knockout (KO) or wild type (WT) C57BL/6J mice. Thereafter, mice received MFG-E8 (or vehicle) injections for 9 weeks prior to histopathological analysis of allografts for intimal proliferation (hematoxylin and eosin staining) and leukocyte infiltration assessment (immunofluorescence). Phenotypes of blood leukocytes and humoral responses were also evaluated (flow cytometry and ELISA). Mice receiving MFG-E8 KO aortas without MFG-E8 injections had the most severe intimal proliferation (p p = 0.003) and decreased systemic CD4+ and CD8+ T-cell activation (p p < 0.01). Thus, the analarmin MFG-E8 appears to be an important protein for reducing intimal proliferation in this murine model of transplant vasculopathy. MFG-E8 effects are associated with intra-allograft macrophage reprogramming and systemic T-cell activation dampening

    SSC from MFG-E8 KO mice reduces the anti-inflammatory reprogramming of macrophages.

    No full text
    <p>Data are presented as value mean ± SD in pg/mL; SSC: apoptotic serum-starved conditioned medium; TGF: transforming growth factor; IL: interleukin; MIP: macrophage inflammatory protein; MCP: monocyte chemotactic protein.</p

    Apoptotic EC-conditioned media contain MFG-E8 and reprogram macrophages.

    No full text
    <p><b>A</b> Percentage of cells with increased chromatin condensation and cell membrane permeabilization (as evaluated with HO and PI staining) in HUVEC exposed to normal medium with growth factors without serum (normal serum-starved, NSS) or serum starvation (SS) for 1 h to 4 h (*<i>p</i><0.001 versus Normal, <i>n</i> = 3). Example of HO/PI staining on serum starved HUVEC for 4 h showing chromatin condensation, right panel. <b>B</b> MEC and HUVEC were serum-starved for 1 h to 4 h. Supernatants (upper panels) and cells (lower panels) were harvested. Immunoblotting of MEC protein extracts showed that MFG-E8 levels decreased over time in parallel with increased active caspase-3 levels (lower left panel). HUVEC also exhibited reduced intracellular MFG-E8 levels over time (lower right panel). MFG-E8 levels increased over time in serum-starved conditioned medium (SSC) from EC (upper panels). β-Actin and Ponceau red staining were loading controls. Representative of 3 experiments. <b>C</b> Percentage of cells with increased chromatin condensation and cell membrane permeabilization (as evaluated with HO and PI staining) in HUVEC exposed to MMC 0.01 mg/mL or vehicle in normal medium and serum starvation (as positive control) for 15 h (left panel), *<i>p</i><0.0001 versus vehicle, <i>n</i> = 3. Immunoblot for hMFG-E8 in supernatant of EC treated with MMC (right panel). Ponceau red staining is shown as loading control. Representative of 2 experiments. <b>D</b> Immunoblot for hMFG-E8 in supernatants conditioned by necrotic HUVEC (3 freeze-thaw cycles) and serum-starved HUVEC as positive control. Ponceau red staining included as loading control. Representative of 2 experiments. <b>E</b> Immunoblot for mMFG-E8 from total medium conditioned by apoptotic EC (Total SSC), supernatant after removal of apoptotic blebs by centrifugation at 50 000 g (SSC without (W/O) blebs) and apoptotic blebs (Blebs) purified from total SSC by centrifugation, supernatant obtained from the supernatant after 50 000 g and 200 000 g centrifugation (SSC W/O exo.) and exosome-like nanovesicle fraction pelleted after the 200 000 g centrifugation (Exo.). Proteins from equal initial volumes were precipitated by TCA. Ponceau red staining is shown as loading control of samples. Representative of 2 experiments. <b>F</b> MEC were serum-starved for 4 h, the SSC were harvested, centrifuged to remove apoptotic cells. Murine macrophages were exposed to SSC or serum starvation (SS) for 24 h. ELISA were performed for TGF-β<sub>1</sub>, VEGF, IL-10, (left panel) MCP-1 and MIP-2 (right panel), *<i>p</i><0.05, representative of <i>n</i> = 14, 12, 4, 7 and 9 separate experiments respectively.</p
    corecore