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Resident Pleural Macrophages Are Key Orchestrators
of Neutrophil Recruitment in Pleural Inflammation
Jean François Cailhier*, Deborah A. Sawatzky*, Tiina Kipari, Kris Houlberg, Dave Walbaum, Simon Watson,
Richard A. Lang, Spike Clay, David Kluth, John Savill, and Jeremy Hughes

Phagocyte Laboratory, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; and
Division of Developmental Biology, Department of Ophthalmology, Children’s Hospital Research Foundation, Cincinnati, Ohio

Rationale: The role played by resident pleural macrophages in the
initiation of pleural inflammation is currently unclear.
Objective: To evaluate the role of resident pleural macrophages in
the initiation of inflammation.
Methods: We have used a conditional macrophage ablation strategy
to determine the role of resident pleural macrophages in the regula-
tion of neutrophil recruitment in a murine model of experimental
pleurisy induced by the administration of carrageenan and formalin-
fixed Staphylococcus aureus.
Measurements and Main Results: Conditional macrophage ablation
mice express the human diphtheria toxin receptor under the control
of the CD11b promoter such that the administration of diphtheria
toxin induces ablation of nearly 97% of resident macrophages.
Ablation of resident pleural macrophages before the administration
of carrageenan or S. aureus dramatically reduced neutrophil influx
into the pleural cavity. In the carrageenan model, the reduction in
neutrophil infiltration was associated with marked early reduction
in the level of macrophage inflammatory protein 2 as well as re-
duced levels of various cytokines, including tumor necrosis factor �,
interleukin 6, and interleukin 10. Adoptive transfer of nontransgenic
macrophages partially restored neutrophil infiltration. We also stim-
ulated macrophage-depleted and nondepleted pleural cell popula-
tions with carrageenan in vitro and determined the production of
chemokines and cytokines. Chemokine and cytokine production
was markedly reduced by macrophage depletion, reinforcing the
role of resident pleural macrophages in the generation of mediators
that initiate acute inflammation.
Conclusion: These studies indicate a critical role for resident pleural
macrophages in sensing perturbation to the local microenviron-
ment and orchestrating subsequent neutrophil infiltration.

Keywords: inflammation; macrophage; pleural diseases

The pleural membranes and associated cells are important be-
cause they are metabolically active and act as a barrier to invad-
ing pathogens by generating an innate and adaptive immunologic
response. The pleural cavity is lined with mesothelium and con-
tains resident macrophages (Mφ), mast cells, and lymphocytes
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(1, 2). During pleural inflammation, it has been reported that
mesothelial cells are predominantly responsible for the secre-
tion of C-X-C chemokines, such as interleukin 8 (IL-8), and
C-C chemokines, such as macrophage inflammatory protein 1�
(MIP-1�) and macrophage chemoattractant protein 1 (MCP-1),
which act to recruit neutrophils (polymorphonuclear leukocytes
[PMNs]) and mononuclear cells (3–6). In addition, a recent study
demonstrated that activated pleural fibroblasts may also be a
source of C-X-C and C-C chemokine production (7).

Previous work suggested that the initiation of inflammation
is dependent on endogenous IL-6 secretion that subsequently
stimulates the additional production of tumor necrosis factor �
(TNF-�) and IL-1� from resident pleural cells (8). In contrast,
increased IL-1� levels have been reported to precede elevated
IL-6 levels (9), thereby suggesting that IL-1� might induce IL-6
production. There is no doubt that TNF-� and IL-1� are key
cytokines in the development of pleural inflammation because
they act to enhance IL-8 and MCP-1 production from mesothe-
lial cells (3, 5, 10–12). In addition, studies using function-blocking
antibodies suggest that activated resident Mφ could be responsi-
ble for this TNF-� and IL-1� secretion (10, 12).

Carrageenan-induced pleurisy is a well-established model of
acute inflammation (13) and is characterized by a rapid influx
of PMNs followed by mononuclear cell infiltration (14, 15). This
model is often used to assess the antiinflammatory effects of
pharmaceutical agents (16–20) and to assess the in vivo impor-
tance of established inflammatory mediators (21–23). Although
the neutrophil influx evident in this model is generally used
as an experimental readout of acute inflammation, there are
data indicating that neutrophils are involved in the release of
injurious enzymes and modulation of vascular permeability in
carrageenan-mediated pleural inflammation (24, 25).

To date, there has been little study of the role of the resident
pleural Mφ in the initiation of inflammation and orchestration
of PMN recruitment. Previous work demonstrated a reduced
eosinophil influx after administration of LPS to mice that had
been previously treated with diphosphonate-containing lipo-
somes to deplete resident pleural Mφ (26). Although this suggests
that resident pleural Mφ may play a key role in the initiation
of pleural inflammatory responses, there are no definitive data
available for PMN infiltration and proinflammatory cytokine
production.

This study used transgenic mice expressing the human diph-
theria toxin receptor (DTR) under the CD11b promoter (desig-
nated CD11b-DTR mice) (27) to examine the role of resident
pleural Mφ in carrageenan-induced pleurisy. Administration of
diphtheria toxin (DT) to CD11b-DTR mice results in rapid
depletion of resident pleural Mφ. Our data indicate that ablation
of resident pleural Mφ markedly blunted both PMN recruitment
and the levels of key chemokines and cytokines. In addition,
resident Mφ ablation markedly reduced the acute PMN infiltra-
tion that followed the instillation of fixed, killed Staphylococcus
aureus. This study demonstrates that resident pleural Mφ play
an essential role in the orchestration of pleural PMN recruitment
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in pleural inflammation induced by carrageenan and fixed, killed
S. aureus.

METHODS

Macrophage Ablation and Pleurisy Induction

Mice were housed in the University of Edinburgh animal facilities and
experiments were performed in accordance with institutional and U.K.
Home Office guidelines. CD11b-DTR transgenic mice were generated
as previously described and were on an FVB/N background (27). Resi-
dent pleural Mφ were ablated in homozygous CD11b-DTR mice by
intraperitoneal injection of DT (25 ng/g body weight) 24 h before the
administration of carrageenan. DT-treated FVB/N wild-type (WT) mice
served as control animals. Carrageenan-induced pleurisy was induced
as described previously (28). �-Carrageenan (0.1 ml of a 1% solution)
was injected into the pleural cavity. Animals were culled at various
time points after pleurisy developed. In addition, 3 � 106 formalin-
fixed, fluorescently labeled S. aureus (Sigma, Dorset, UK) were injected
into the pleural cavity of CD11b-DTR mice and FVB/N WT mice
24 h after administration of DT or phosphate-buffered saline (PBS).
Animals were culled 4 h later.

Cell Processing and Analysis

Pleural cavities were washed with 1 ml of 3.15% (weight/volume)
sodium citrate (Sigma, Dorset, UK) in saline. We performed flow cyto-
metric analysis of pleural lavage and circulating blood as described
previously (27). The antibodies used were anti-CD11b fluorescein iso-
thiocyanate, anti-GR1 phycoerythrin (PE) and anti–c-kit PE (all from
eBiosciences, London, UK), anti-B220 (mouse CD45R) PE and mouse
anti-CD3 PE (both from Pharmingen, San Diego, CA), and F4/80 allo-
phycocyanin (APC) and F4/80 PE (both from Caltag, Botolph Claydon,
UK). Cell number was determined as described previously (27).

Adoptive Transfer of Pleural Cell Populations

Pleural lavages from groups of naive FVB/N WT mice were incubated
with PE-conjugated anti-F4/80 antibody to stain Mφ and then incubated
with anti-PE conjugated magnetic cell sorting (MACS) magnetic beads
(Miltenyi Biotech Ltd., UK). Mφ were removed by passing the cells
over a magnetic MACS column (27). As a control, pleural cells were
incubated with an isotype control antibody and then processed as pre-
viously stated. This method removed 98.2 � 0.7% of the Mφ. In addition,
resident pleural Mφ were purified by negative selection after incubation
of pleural cells with PE-conjugated anti-B220, anti–c-kit, and anti-CD3
antibodies followed by incubation with anti–PE-conjugated MACS
magnetic beads and passage through the magnetic MACS column;
isolated Mφ were 90% pure. Purified Mφ and the Mφ-depleted and Mφ
nondepleted pleural cell populations were resuspended in 1% carra-
geenan and administered into the pleural cavity of each mouse. Groups
therefore consisted of (1 ) DT-treated CD11b-DTR transgenic mice
depleted of resident pleural Mφ, (2 ) DT-treated FVB/N WT mice, (3 )
Mφ-depleted mice reconstituted with a nondepleted Mφ-rich pleural
cell population, (4 ) Mφ-depleted mice reconstituted with a Mφ-depleted
pleural cell population, and (5 ) Mφ-depleted mice reconstituted with
a population of pleural Mφ purified by negative selection. As a control,
the effect of cell transfer alone was assessed by reconstituting
Mφ-depleted mice with either nondepleted Mφ-rich pleural cells or
purified Mφ alone in the absence of any additional stimulus. Animals
were killed 6 h after induction of pleurisy.

Chemokine Studies

Mice underwent pleural lavage at 1, 3, 6, 24, and 72 h after administra-
tion of carrageenan. Lavage fluid was centrifuged and stored at �80�C
until analyzed by specific ELISA for MIP-2, keratinocyte-derived
chemokine (KC), and TNF-� (R&D Systems, Abingdon, UK). Cytome-
tric bead array (BD Biosciences, Oxford, UK) was also used to deter-
mine the concentration of IL-6, IL-10, IL-12p70, IFN-�, and MCP-1,
with samples being processed as described previously (29). Chemokine
and cytokine production by intact pleural cell populations or Mφ-de-
pleted pleural cell populations stimulated with carrageenan in vitro was
also determined: Mφ depletion was achieved using the MACS magnetic
column and resulted in more than 98% Mφ depletion. Control pleural

cells and Mφ-depleted pleural cells were plated in 48-well plates and
exposed to 0.25% carrageenan for 6 h. In control experiments, cell
preparations were exposed to medium alone. Pleural cell–conditioned
supernatants were analyzed as above. No bioassays were undertaken.

Statistical Analysis

One-way analysis of variance with a Bonferroni multiple comparison
post hoc test, with a 95% confidence interval, or a Student’s t test was
used as appropriate. Statistical analysis including correlation analysis
was performed using GraphPad Prism software (San Diego, CA). The
significance level was set at p 	 0.05. Data are presented as mean � SEM.

RESULTS

Transgenic Pleural Resident Mφ Are Ablated by DT In Vivo

There was no difference in the number of pleural Mφ, B cells,
T cells, or mast cells between CD11b-DTR and FVB/N control
mice (data not shown). Flow cytometric analysis of pleural cells
was performed 24 h after the injection of DT (25 ng/g mouse
body weight). CD11b-DTR transgenic mice exhibited almost
complete ablation (96.1% � 0.8) of F4/80-positive pleural Mφ
after a single dose of DT (Figure 1). In addition, flow cytometric
analysis of whole blood performed 24 h after DT administration
indicated a significant 88% reduction in circulating monocyte
numbers (1.17 � 105 � 5.9 � 104 monocytes/ml whole blood vs.
5.23 � 105 � 7.3 � 104, DT injection vs. control; p 	 0.05).
Circulating monocyte and pleural macrophage numbers re-
mained markedly reduced for 48 h after the administration of
DT with recovery of monocyte/macrophage numbers evident at
72 h (data not shown). However, no reduction in the number
of circulating PMNs was evident 24 h after DT administration
(10.1 � 105 � 1.9 � 105 PMNs/ml whole blood vs. 4.7 � 105 �
0.8 � 105, DT injection vs. control; p 	 0.05). In addition, no
difference in circulating PMN number was evident 6, 48, or 72 h
after the administration of DT, indicating an absence of any
initial neutropenia or delayed effects (6 h: 7.9 � 105 � 1.2 � 105

PMNs/ml whole blood vs. 5.0 � 105 � 1.4 � 105, DT injection vs.
control; p 
 0.05; 48 h: 4.0 � 105 � 0.6 � 105 PMNs/ml whole
blood vs. 4.9 � 105 � 0.1 � 105, DT injection vs. control; p 

0.05; 72 h: 2.9 � 105 � 1.4 � 105 PMNs/ml whole blood vs. 4.4 �
105 � 0.3 � 105, DT injection vs. control; p 
 0.05). We did,
however, note a significant reduction in the number of B cells
and mast cells within the pleural cavity 24 h after the administra-
tion of DT although T-cell numbers were unaffected (B cells:
8.1 � 104 � 5.7 � 104 vs. 32.9 � 104 � 8.8 � 104, DT vs. control;
p 	 0.05; mast cells: 6.1 � 102 � 0.1 � 102 vs. 67.8 � 102 �
18.2 � 102, DT vs. control; p 	 0.05). Interestingly, the depletion
of pleural Mφ is almost complete at 6 h at which time no signifi-
cant difference in the number of B lymphocytes or mast cells
was evident. The loss of B cells and mast cells may be a conse-
quence of the secondary necrosis of apoptotic macrophages that
may occur in the absence of a population of viable macrophages
to phagocytose the dying cells. Also, a subset of B lymphocytes
and mast cells may express CD11b and this may account for the
reduced numbers seen after the administration of DT (30–32).

Pleural Resident Mφ Ablation Reduces PMN Influx in
Carrageenan-induced Pleurisy

We used the conditional Mφ ablation strategy to investigate the
role of resident pleural Mφ in initiating PMN recruitment after
the administration of carrageenan. PMN infiltration after the
administration of 1% carrageenan was markedly attenuated at
all experimental time points after resident Mφ ablation (Figure 2).
It is particularly noteworthy that the early time points of 6 and
24 h demonstrated a dramatic difference between groups. Although
PMN infiltration in CD11b-DTR mice did reach approximately
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Figure 1. Administration of DT 24 h before performing pleural lavage
results in ablation of pleural F4/80-positive macrophages (Mφ). CD11b-
DTR and FVB/N wild-type (WT) mice were treated with diphtheria toxin
(DT) intraperitoneally at a dose of 25 ng/g body weight. Pleural lavage
was performed 24 h later. Cells were stained for the Mφ surface marker
F4/80 and analyzed by flow cytometry. (A ) Representative flow cytome-
try dot plot indicating that over 50% of pleural cells retrievable by pleural
lavage 24 h after DT administration in FVB/N mice are F4/80 positive.
(B ) Administration of DT results in marked ablation of resident
F4/80 positive pleural Mφ in CD11b-DTR mice. DT administration
ablated 96.1 � 0.8% of the resident Mφ population compared with
baseline Mφ numbers (n � 9 mice, p 	 0.0001). APC � allophycocyanin.

50% of control levels at the later time points of 72 h, this
was still significantly less than DT-treated nontransgenic FVB/N
WT mice.

Adoptive Transfer of Nontransgenic Purified Mφ or
Mφ-rich Pleural Cell Populations Partially Restores
PMN Influx in Mφ-ablated CD11b-DTR Mice after
Carrageenan Administration

To further analyze the role of resident pleural Mφ in the initiation
of acute pleural inflammation, we also performed Mφ repletion
studies using the adoptive transfer of either Mφ-rich or Mφ-
depleted pleural cell populations derived from DT-insensitive
nontransgenic FVB/N WT mice. In these experiments, the adop-
tive transfer of Mφ-rich pleural cell populations restored Mφ
number to approximately 50% of the Mφ number normally pres-
ent in pleural lavage fluid. However, despite the fact that Mφ
reconstitution of DT-treated CD11b-DTR mice was incomplete,

Figure 2. Resident Mφ ablation 24 h before administration of carra-
geenan blunts neutrophil (PMN) recruitment. 0.1 ml of 1% carrageenan
was administered to CD11b-DTR and FVB/N WT mice 24 h after DT
treatment. Pleural lavage was performed at 0, 6, 24, and 72 h after
carrageenan administration. Lavaged cells were stained for GR1 and
counted by flow cytometry (*p 	 0.05 vs. CD11b-DTR group; n � 4–5
mice/group).

the administration of Mφ-rich pleural cells concurrently with
carrageenan significantly increased PMN infiltration at 6 h
(Figure 3). The partial restoration of peak PMN infiltration was
approximately 35% of levels present in control DT-treated FVB/
N WT mice at the same time point. In contrast, administration
of Mφ-depleted pleural cells concurrently with carrageenan
made no significant impact on PMN infiltration compared with
Mφ-depleted CD11b-DTR mice (Figure 3). Interestingly, a sig-
nificant correlation (R2 � 0.9979) was found between the Mφ
number present in the pleural space at the initiation of inflam-
mation and the number of infiltrating PMNs present at 6 h. We
also reconstituted DT-treated CD11b-DTR mice with purified
Mφ (90% pure) concurrently with the administration of carra-
geenan and this resulted in a comparable PMN influx to that
evident after reconstitution with Mφ-rich pleural cells. It should
be noted that, although DT-induced Mφ ablation is associated
with a reduction of B-cell and mast cell number, the administra-
tion of Mφ-depleted pleural cells comprising B cells, mast cells,
and T cells had no significant impact on PMN infiltration. Last,
the adoptive transfer of a control population of Mφ-rich pleural
cells or purified Mφ was noninflammatory (Figure 3).

Mφ-dependent Chemokine and Cytokine Responses during
Carrageenan-induced Pleurisy

In this model, we found peak levels of the PMN C-X-C chemo-
kines MIP-2 and KC at the 1- and 3-h time points, respectively.
Ablation of resident pleural Mφ before administration of
carrageenan markedly reduced MIP-2 levels at both 1 and 3 h
(Figure 4A), thereby suggesting that the early production of
MIP-2 in vivo is predominantly Mφ dependent. Interestingly,
however, Mφ-ablated mice exhibited a delayed and significantly
blunted MIP-2 response. It is of interest that very few Mφ
(	 30,000) are present within the pleural cavity of DT-treated
CD11b-DTR mice at the 6-h time points, suggesting that the
delayed MIP-2 response may be derived from production by
local cells, such as mesothelial cells and others. MIP-2 levels are
very low at the 24-h time point and beyond in both experimental
groups. In contrast to the MIP-2 data, a very modest, albeit
statistically significant, reduction in KC levels was evident in
Mφ-depleted mice at the 1-, 3-, and 6-h time points (Figure 4B),
but no differences were evident thereafter, suggesting that cells
other than Mφ may be responsible for production of this chemo-
kine. The fact that ablation of resident pleural Mφ dramatically
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Figure 3. Adoptive transfer of
Mφ-rich pleural cells and puri-
fied pleural macrophages par-
tially restores PMN infiltration
in carrageenan-induced pleu-
risy. FVB/N WT and six groups
of CD11b-DTR mice were in-
jected with DT (25 ng/g body
weight) 24 h before carra-
geenan injection. Three groups
of Mφ-depleted CD11b-DTR
mice were reconstituted with
(1 ) purified Mφ isolated by
negative selection (90% pure,
designated Mφ), (2 ) Mφ-rich
pleural cells (designated MφR),
or (3 ) Mφ-depleted pleural cells
(designated MφD) at the same
time as the administration of

carrageenan. Mice underwent pleural lavage 6 h after the induction of inflammation. Controls comprised the adoptive transfer of either (1 ) purified
Mφ or (2 ) Mφ-rich pleural cell populations to DT-treated CD11b-DTR mice in the absence of carrageenan. DT-treated CD11b-DTR mice exhibited
a marked reduction in PMN infiltration in response to carrageenan, whereas reconstitution of Mφ-depleted mice with either purified Mφ or a Mφ-
rich pleural cell population partially restored PMN infiltration. The adoptive transfer of an Mφ-depleted pleural cell population did not increase
PMN infiltration. The adoptive transfer of either purified Mφ or an Mφ-rich pleural cell population alone did not induce significant PMN infiltration
compared with DT-treated CD11b-DTR mice (n � 8–10 mice/group; *p 	 0.05 vs. DT-treated CD11b-DTR mice that received carrageenan).

blunted PMN infiltration suggests that early PMN influx is very
dependent on resident Mφ production of MIP-2. The ablation
of resident pleural Mφ did not exert marked effects on the pro-
duction of MCP-1 as levels were only reduced by approximately
36% at the 3-h time point (Figure 4C), suggesting a source other
than Mφ.

Analysis of the levels of cytokines in pleural lavage samples
indicated a key role for resident Mφ in the early production of
the cytokines TNF-�, IL-6, and IL-10. Mφ ablation resulted in
greater than 90% reduction in TNF-� and IL-6 levels, with a
less dramatic but significant inhibitory effect on IL-10 levels
(Figure 5). IL-12 levels were also reduced with Mφ ablation at
24 h (data not shown). Despite these important differences in
these cytokines, IFN-� levels were comparable between DT-
treated CD11b-DTR and FVB/N control mice at each time point
(data not shown), suggesting a source other than resident Mφ.

Chemokine and Cytokine Responses of Pleural Cell
Populations In Vitro Are Mφ Dependent

Because pleural mesothelial cells may be an important source
of chemokines, we performed additional in vitro studies to deter-
mine the production of chemokines and cytokines by carrageenan-
stimulated pleural cell populations that had been depleted of
Mφ. Immunomagnetic Mφ depletion using antibodies for the Mφ
specific marker F4/80 resulted in 98% depletion of Mφ from
pleural cell populations, whereas B-cell and mast cell numbers
were comparable between groups (data not shown). Stimulation
of control Mφ-rich pleural cell populations for 6 h with carra-
geenan resulted in significant production of MIP-2 and KC
(Figure 6). In contrast, no significant chemokine production was
evident after stimulation of pleural cell populations depleted of
resident Mφ but containing B cells, T cells, and mast cells, thereby
indicating that production of these PMN C-X-C chemokines
in vitro was completely Mφ dependent. Limited production of
MCP-1 was evident in vitro but this was also significantly reduced
by depletion of resident Mφ (25.3 � 5.3 vs. 7.1 � 4.7 pg/ml,
Mφ-rich pleural cells vs. Mφ-depleted pleural cells; p 	 0.05).
Analysis of in vitro cytokine production demonstrated that resi-
dent Mφ were key cytokine producers, because Mφ depletion

before carrageenan stimulation resulted in a reduction of 63, 67,
and 92% in the production of TNF-�, IL-10, and IL-6, respec-
tively (Figure 7).

Pleural Resident Mφ Ablation Reduces PMN Influx in
Response to S. aureus

Although the carrageenan model of pleurisy is a useful model
of inflammation and has been used by many investigators to
dissect inflammatory pathways, we sought evidence that resident
Mφ were involved in models of inflammation that were more
closely related to clinical disease. We initially used the model
of intrapleural LPS instillation, but this resulted in a very low
level of PMN infiltration compared with carrageenan. We there-
fore instilled formalin-fixed, fluorescently labeled S. aureus into
the pleural cavity and this induced a marked PMN infiltrate at
the 4-h time point (
 1.5 � 106 PMNs). The ablation of resident
Mφ significantly reduced PMN infiltration after the administration
of S. aureus (Figure 8). We also found comparable PMN infiltra-
tion in DT-treated FVB/N WT mice and PBS-treated CD11b-
DTR mice, indicating that insertion of the transgene had no
significant effect on the generation of acute inflammatory re-
sponses (Figure 8A), with comparable findings evident after
the administration of carrageenan (data not shown). Cytospin
preparations of pleural lavage cells indicated prominent inges-
tion of S. aureus particles by Mφ in DT-treated FVB/N WT mice
(Figure 8B) with very limited uptake by PMNs. In contrast, in
the absence of Mφ, DT-treated CD11b-DTR mice exhibited
marked ingestion of S. aureus particles by PMNs (Figure 8B).

DISCUSSION

We used a conditional macrophage ablation strategy to dissect
the role of the resident pleural Mφ in the initiation of pleural
inflammation and PMN recruitment in carrageenan-induced
pleurisy. Carrageenan induces inflammatory responses that are
likely to be involved in human disease such as tuberculosis,
which is a cause of significant morbidity and mortality. We also
examined the effect of Mφ ablation before the administration of
fixed S. aureus, a model with direct clinical relevance. Although
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Figure 4. Resident Mφ ablation attenuates chemokine production in
carrageenan-induced pleurisy. CD11b-DTR and FVB/N WT mice were
injected with DT (25 ng/g body weight) 24 h before administration of
carrageenan. Pleural lavage was performed 1, 3, 6, 24, and 72 h after the
induction of pleurisy. The levels of macrophage inflammatory protein 2
(MIP-2; A ) and keratinocyte-derived chemokine (KC; B ) were deter-
mined in the pleural lavage supernatant by specific ELISA. The level of
macrophage chemoattractant protein 1 (MCP-1; C ) in the pleural lavage
supernatant was determined by cytometric bead array (CBA) analysis
(*p 	 0.05 vs. CD11b-DTR group; n � 5 mice/group).

the resident pleural Mφ can secrete chemokines and cytokines,
their role in pleurisy is currently unclear. Pleural mesothelial
cells also have the capacity to secrete various chemokines (3, 6,
7, 12, 33, 34). In addition, some studies have identified resident
pleural Mφ-derived proinflammatory cytokines such as TNF-�
that are essential for the secretion of C-X-C and C-C chemokines
from pleural mesothelial cells (3, 5, 8, 10–12, 33), suggesting
important cross-talk between different pleural cells.

The first major finding of this study is that the administration
of DT to CD11b-DTR transgenic mice results in the rapid and
effective ablation of resident pleural Mφ, with greater than 96%
of resident pleural Mφ being depleted 24 h after DT treatment.
This is comparable with our previous work studying peritoneal
inflammation (27). Interestingly, despite PMN expression of
CD11b, the administration of DT did not induce the death of
circulating PMNs, indicating that PMNs are insensitive to DT,
potentially as a result of their lower level of protein synthesis.

Figure 5. Resident Mφ ablation attenuates cytokine production in
carrageenan-induced pleurisy. CD11b-DTR and FVB/N WT mice were
injected with DT (25 ng/g body weight) 24 h before carrageenan injec-
tion. Pleural lavage was performed 1, 3, 6, 24, and 72 h after the induction
of pleurisy. The level of tumor necrosis factor � (TNF-�; A) in the pleural
lavage supernatant was determined by specific ELISA, whereas the levels
of interleukin 6 (IL-6; B) and IL-10 (C ) were determined by CBA analysis
(*p 	 0.05 vs. CD11b-DTR group; n � 5 mice/group).

The second major finding of this study is that resident pleural
Mφ ablation dramatically blunted early PMN infiltration into
the pleural cavity, indicating an important role for resident pleu-
ral Mφ in initiating acute pleural inflammation. The administra-
tion of DT did not affect the numbers of circulating PMNs,
thereby excluding this potential cause for diminished PMN infil-
tration of the pleural cavity. We performed Mφ repletion studies
involving the adoptive transfer of nontransgenic pleural cell pop-
ulations to Mφ-depleted mice concurrent with the induction of
pleurisy. The adoptive transfer of pleural cell populations de-
pleted of Mφ by magnetic immunodepletion had no significant
effect on PMN recruitment; PMN numbers were comparable to
those evident in control Mφ-depleted mice. In contrast, adoptive
transfer of either pleural cell populations containing Mφ or a
population of purified Mφ significantly increased pleural PMN
infiltration, reinforcing the key role of resident pleural Mφ.
Adoptive transfer of pleural cells was unable to restore Mφ
numbers to normal values and this may explain the partial resto-
ration of PMN infiltration compared with DT-treated FVB/N
control mice. However, the striking correlation between the
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Figure 6. In vitro production of MIP-2 and KC after carrageenan stimula-
tion is Mφ dependent. Resident pleural cells were harvested and immu-
nodepleted of resident pleural Mφ by passage over a magnetic column.
Equivalent numbers of cells were plated and stimulated with 0.25%
carrageenan or normal medium for 6 h. Supernatants were harvested
and analyzed by specific ELISA for MIP-2 and KC (*p 	 0.05 vs. all cells
with medium; n � 4 wells/condition).

number of pleural Mφ at the initiation of disease and the number
of infiltrating PMNs at 6 h after carrageenan administration
strongly supports a key proinflammatory role for resident pleural
Mφ. It is possible that carrageenan pleurisy may be partially
dependent on the proinflammatory actions of recruited mono-
cytes, unlike experimental peritonitis where acute PMN infiltra-
tion is monocyte independent (27). Our data indicate a profound
effect of Mφ depletion on PMN recruitment at the early time
point of 6 h and because monocyte recruitment occurs signifi-
cantly later in the carrageenan model it is likely that monocyte
recruitment will be very limited at this early time point. Thus,
a reduction in monocyte recruitment in DT-treated CD11b-DTR
mice is unlikely to be involved in the early reduction in PMN
infiltration in these studies, although recruited monocytes may
play a role in PMN infiltration at later time points.

Although defective PMN migration consequent on exposure
to DT is an alternative explanation for these findings, our previ-
ous work in experimental peritonitis indicated that reconstitu-
tion of Mφ-depleted mice with nontransgenic Mφ was able to
fully restore PMN infiltration in response to thioglycollate (27).
In addition, intrapleural administration of the chemokine MIP-2
to Mφ-depleted CD11b-DTR mice resulted in significant PMN
infiltration (3.2 � 105 � 0.9 � 105 PMNs/ml at 4 h after the
intrapleural administration of 30 ng MIP-2), suggesting that
PMN migration is not defective under these experimental
conditions.

In these experiments, DT administration and the subsequent
induction of widespread Mφ death did affect the numbers of
pleural B cells and mast cells. However, despite this potentially
confounding issue, several factors support the prominent role
of the pleural Mφ in the carrageenan model. First, data from
in vitro experiments indicate a dramatic reduction in chemokine
and cytokine production after Mφ depletion from resident pleu-
ral cell populations. In these studies, pleural cells were labeled
with a PE-conjugated antibody to the specific Mφ marker F4/80
before immunomagnetic depletion, and F4/80 is not expressed
by B cells or mast cells. Second, adoptive transfer of Mφ-depleted
pleural cells comprising B cells, T cells, and mast cells did not
induce significant PMN recruitment after carrageenan adminis-

Figure 7. In vitro production of the cytokines TNF-�, IL-10, and IL-6
after carrageenan stimulation is Mφ dependent. Resident pleural cells
were harvested and immunodepleted of resident pleural Mφ by passage
over a magnetic column. Equivalent numbers of cells were stimulated
with 0.25% carrageenan or normal medium for 6 h. Supernatants were
harvested and analyzed by specific ELISA for TNF-� and by CBA for
IL-10 and IL-6 (*p 	 0.05 all cells vs. Mφ-depleted for their respective
condition, i.e., Mφ with medium or Mφ with carrageenan). n � 4 wells/
condition.

tration. In contrast, adoptive transfer of Mφ-rich pleural cells or
purified Mφ isolated by negative selection significantly increased
PMN infiltration in response to carrageenan administration.
Last, previous work suggests that mast cells do not play a signifi-
cant role in the carrageenan pleurisy model (35, 36).

We then examined the effect of resident pleural Mφ ablation
on the level of C-X-C chemokines in this model. Resident pleural
Mφ ablation markedly reduced MIP-2 levels in the pleural exu-
date but had a lesser, albeit significant, inhibitory effect on KC
levels. In vitro study of Mφ-replete or Mφ-depleted pleural cell
populations indicated that Mφ are a key source of chemokines
because Mφ-depleted pleural cell populations produced minimal
amounts of the chemokines MIP-2 and KC. Interestingly, these
in vitro studies demonstrated comparable production of MIP-2
and KC, whereas analysis of pleural lavage fluid indicated that
KC levels were approximately two- to threefold higher than
MIP-2 levels in vivo. These data are comparable to our previous
studies of thioglycollate peritonitis (27) and suggest that other
cells within the pleural cavity, such as mesothelial cells, may be
an important source of KC in vivo. The suggestion that pleural
cells, other than those retrievable by pleural lavage, represent
a significant source of KC is consistent with recent work in a
wound model of inflammation (37) that demonstrated MIP-2
expression by inflammatory cells while KC was predominantly
expressed by resident tissue cells, such as endothelial cells and
fibroblasts. Pleural mesothelial cells undoubtedly participate in
pleural inflammation and our data suggest that mesothelial cells
actively contribute to KC production. It should be stressed, how-
ever, that marked inhibition of PMN recruitment was evident
at early time points in the presence of relatively preserved KC
levels suggesting that MIP-2 is more important in vivo in this
model. Also, pleural cell populations stimulated with carra-
geenan in vitro produced relatively low levels of the C-C chemo-
kine MCP-1 compared with the levels found in vivo, suggesting
a prominent role for mesothelial cells in MCP-1 production
in vivo and subsequent mononuclear cell recruitment. Our data
are therefore also in accordance with previous reports high-
lighting the importance of pleural mesothelial cells (3, 6, 38).
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Our data also indicate that resident pleural Mφ are critically
involved in the generation of cytokines because TNF-�, IL-10,
and IL-6 levels in pleural exudates were significantly reduced in
CD11b-DTR mice treated with DT. Also, carrageenan-stimulated
pleural cell populations exhibited a significant reduction in cytokine
levels in vitro after magnetic immunodepletion of pleural Mφ.
Our studies raise the question as to why there was no significant
PMN infiltration in response to significant KC production. Perti-
nent previous work studying the effect of function-blocking anti-
bodies to either MIP-2 or KC in thioglycollate peritonitis indi-
cates that inhibition of either chemokine individually results in
marked (
 70%) inhibition of PMN infiltration with inhibition
of both chemokines giving little additional effect (39, 40). We
did not perform in vitro PMN chemotaxis assays to assess the
chemotactic activity of pleural lavage fluid from Mφ-depleted
and control mice with pleurisy because the preparation of pure
populations of nonactivated murine neutrophils is problematic.
In addition, our previous studies indicate that experiments in-

�

Figure 8. Resident Mφ ablation 24 h before the administration of forma-
lin-fixed Staphylococcus aureus significantly blunts PMN recruitment.
(A ) A total of 3 � 106 formalin-fixed, fluorescently labeled S. aureus
were instilled into the pleural cavity of CD11b-DTR and FVB/N WT mice
24 h after DT treatment with phosphate buffered saline (PBS)–treated
CD11b-DTR serving as an additional control. Pleural lavage was per-
formed at 4 h after the administration of S. aureus. Lavaged cells were
stained for GR1 and counted by flow cytometry (*p 	 0.05 vs. DT-
treated CD11b-DTR group; n � 4 mice/group). (B ) Photomicrographs
of Diffquick-stained (A and C) or Hoechst-stained (B and D) cytospin
preparations of pleural lavage cells from either DT-treated FVB/N WT
mice (A and B) or DT-treated CD11b-DTR mice (C and D) 4 h after the
administration of 3 � 106 formalin-fixed, fluorescently labeled S. aureus.
PMNs may be readily distinguished from Mφ by their smaller size and
the characteristic lobulated or circular nuclear morphology. Note that
in B, the cell indicated with an arrow is the only Mφ present in the field
and exhibits a large, rounded nucleus, whereas the remaining smaller
PMNs exhibit a polylobular nuclear morphology. There are no Mφ pres-
ent in C and D. Prominent ingestion of S. aureus particles by Mφ is
evident in control DT-treated FVB/N WT mice (examples shown with
arrows in A and B), with very limited uptake by PMNs. In contrast, in
the absence of Mφ, DT-treated CD11b-DTR mice exhibit marked inges-
tion of S. aureus particles by PMNs (examples shown with arrows in C
and D).

volving the adoptive transfer of lavage fluid are confounded by
the resultant dilution of chemokines and cytokines. However,
the dramatic reduction in the levels of intrapleural cytokines in
Mφ-depleted mice may contribute to the defective PMN infiltra-
tion via modulation of local endothelial cell expression of adhe-
sion molecules involved in PMN diapedesis. Although many
mediators, including cytokines, nitric oxide, complement pro-
teins, and prostaglandins, are involved in acute inflammatory
processes and leukocyte recruitment, our findings indicate that
resident Mφ play a key role in orchestrating PMN influx in
carrageenan pleurisy. In addition, our limited experiments per-
formed in mice administered killed S. aureus indicated that Mφ
depletion markedly reduces staphylococcal-induced PMN infil-
tration. Also, prominent Mφ ingestion of S. aureus was evident
in control DT-treated FVB/N mice and this reinforces the key
role for resident Mφ as sentinel cells that act to recognize and
clear proinflammatory pathogens and particulate material.

In conclusion, this study used a transgenic model of condi-
tional Mφ ablation to demonstrate a key role for the resident
pleural Mφ in sensing pleural irritation and orchestrating PMN
infiltration in carrageenan-induced pleurisy. This proinflamma-
tory function is predominantly mediated by production of the
potent PMN C-X-C chemokine MIP-2 and proinflammatory cy-
tokines such as TNF-� and IL-6 that can promote the production
of the PMN C-X-C chemokine KC by mesothelial cells. Our
study suggests that resident Mφ are critically important produc-
ers of PMN chemokines and proinflammatory cytokines and act
to orchestrate PMN recruitment in murine carrageenan-induced
pleurisy.
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