78 research outputs found

    Dairy science and health in the tropics: challenges and opportunities for the next decades

    Get PDF
    EditorialIn the next two decades, the world population will increase significantly; the majority in the developing countries located in the tropics of Africa, Asia, Latin America, and the Caribbean. To feed such a population, it is necessary to increase the availability of food, particularly high-value animal protein foods produced locally, namely meat and dairy products. Dairy production in tropical regions has a lot of growth potential, but also poses a series of problems, particularly as dairy production systems were developed in temperate countries and in most cases are difficult to implement in the tropics. Drawbacks include hot weather and heat stress, the lack of availability of adequate feeds, poor infrastructure, and cold chain and the competition with cheap imports from temperate countries. This position paper reviews the major drawbacks in dairy production for the five major dairy species: cattle, water buffalo, sheep, goat, and camel, as well as the future trends in research and development. It also concerns the major trends in reproduction and production systems and health issues as well as environmental concerns, particularly those related to greenhouse gas emissions. Tropical Animal Health and Production now launches a topical collection on Tropical Dairy Science. We aim to publish interesting and significant papers in tropical dairy science. On behalf of the editorial board of the Tropical Animal Health and Production, we would like to invite all authors working in this field to submit their works on this topic to this topical collection in our journalinfo:eu-repo/semantics/publishedVersio

    Dissecting the Genetic Components of Adaptation of Escherichia coli to the Mouse Gut

    Get PDF
    While pleiotropic adaptive mutations are thought to be central for evolution, little is known on the downstream molecular effects allowing adaptation to complex ecologically relevant environments. Here we show that Escherichia coli MG1655 adapts rapidly to the intestine of germ-free mice by single point mutations in EnvZ/OmpR two-component signal transduction system, which controls more than 100 genes. The selective advantage conferred by the mutations that modulate EnvZ/OmpR activities was the result of their independent and additive effects on flagellin expression and permeability. These results obtained in vivo thus suggest that global regulators may have evolved to coordinate activities that need to be fine-tuned simultaneously during adaptation to complex environments and that mutations in such regulators permit adjustment of the boundaries of physiological adaptation when switching between two very distinct environments

    Etude des interactions entre les cellules épithéliales intestinales et la flore commensale

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Systematic Review of the Interaction between Nutrition and Immunity in Livestock: Effect of Dietary Supplementation with Synthetic Amino Acids

    No full text
    Infectious diseases represent one of the most critical threats to animal production worldwide. Due to the rise of pathogen resistance and consumer concern about chemical-free and environmentally friendly productions, the use of antimicrobials drugs is no longer desirable. The close relationship between nutrition and infection has led to numerous studies about livestock. The impact of feeding strategies, including synthetic amino acid supplementation, on host response to various infections has been investigated in different livestock animals. This systematic review provides a synthesis of the experimental studies on the interactions between synthetic amino acid supplementation and immune response to infectious diseases in livestock. Following PRISMA guidelines, quantitative research was conducted using two literature databases, PubMed and Web of Science. The eligibility criteria for the research articles were: (1) the host is a livestock animal; (2) the supplementation with at least one synthetic amino acid; (3) at least one mediator of immunity is measured; (4) at least one production trait is measured. Data were extracted from 58 selected studies. Articles on poultry were the most numerous; few contained experiments using ruminants and pigs. Most of the authors hypothesized that synthetic amino acid supplementation would particularly improve the animals’ immune response against intracellular pathogens. An increase in T and natural killer lymphocytes and macrophages activation, intracellular redox state, lymphocytes proliferation and antibodies production were the most described immune mechanisms associated with synthetic amino acid supplementation. Most of the selected studies focused on three amino acids (methionine, threonine and arginine), all of which are associated with a significant improvement of the host immune response. The use of synthetic amino acid supplementation appears as an encouraging perspective for livestock infectious disease management, and research must concentrate on more analytical studies using these three amino acids

    Assessing Goats' Fecal Avoidance Using Image Analysis-Based Monitoring

    No full text
    International audienceThe recent advances in sensor technologies and data analysis could improve our capacity to acquire long-term and individual dataset on animal behavior. In livestock management, this is particularly interesting when behavioral data could be linked to production performances, physiological or genetical information, with the objective of improving animal health and welfare management. In this study, we proposed a framework, based on computer vision and deep learning, to automatically estimate animal location within pasture and discuss the relationship with the risk of gastrointestinal nematode (GIN) infection. We illustrated our framework for the monitoring of goats allowed to graze an experimental plot, where feces containing GIN infective larvae were previously dropped in delimited areas. Four animals were monitored, during two grazing weeks on the same pasture (week 1 from April 12 to 19, 2021 and week 2, from June 28 to July 5, 2021). Using the monitoring framework, different components of animal behavior were analyzed, and the relationship with the risk of GIN infection was explored. First, in average, 87.95% of the goats were detected, the detected individuals were identified with an average sensitivity of 94.9%, and an average precision of 94.8%. Second, the monitoring of the ability of the animal to avoid infected feces on pasture showed an important temporal and individual variability. Interestingly, the avoidance behavior of 3 animals increased during the second grazing week (Wilcoxon rank sum, p -value < 0.05), and the level of increase was correlated with the level of infection during week 1 (Pearson's correlation coefficient = 0.9). The relationship between the time spent on GIN-infested areas and the level of infection was also studied, but no clear relationship was found. In conclusion, due to the low number of studied animals, biological results should be interpreted with caution; nevertheless, the framework provided here is a new relevant tool to explore the relationship between ruminant behavior and GIN parasitism in experimental studies

    Genomic variants from RNA-seq for goats resistant or susceptible to gastrointestinal nematode infection

    Get PDF
    Gastrointestinal nematodes (GIN) are an important constraint in small ruminant production. Genetic selection for resistant animals is a potential sustainable control strategy. Advances in molecular genetics have led to the identification of several molecular genetic markers associated with genes affecting economic relevant traits. In this study, the variants in the genome of Creole goats resistant or susceptible to GIN were discovered from RNA-sequencing. We identified SNPs, insertions and deletions that distinguish the two genotypes, resistant and susceptible and we characterized these variants through functional analysis. The T cell receptor signalling pathway was one of the top significant pathways that distinguish the resistant from the susceptible genotype with 78% of the genes involved in this pathway showing genomic variants. These genomic variants are expected to provide useful resources especially for molecular breeding for GIN resistance in goats
    corecore