51 research outputs found

    PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms

    Get PDF
    Post-translational poly(ADP-ribosyl)ation has diverse essential functions in the cellular response to DNA damage as it contributes to avid DNA damage detection and assembly of the cellular repair machinery but extensive modification eventually also induces cell death. While there are 17 human poly(ADP-ribose) polymerase (PARP) genes, there is only one poly(ADP-ribose) glycohydrolase (PARG) gene encoding several PARG isoforms located in different subcellular compartments. To investigate the recruitment of PARG isoforms to DNA repair sites we locally introduced DNA damage by laser microirradiation. All PARG isoforms were recruited to DNA damage sites except for a mitochondrial localized PARG fragment. Using PARP knock out cells and PARP inhibitors, we showed that PARG recruitment was only partially dependent on PARP-1 and PAR synthesis, indicating a second, PAR-independent recruitment mechanism. We found that PARG interacts with PCNA, mapped a PCNA binding site and showed that binding to PCNA contributes to PARG recruitment to DNA damage sites. This dual recruitment mode of the only nuclear PARG via the versatile loading platform PCNA and by a PAR dependent mechanism likely contributes to the dynamic regulation of this posttranslational modification and ensures the tight control of the switch between efficient DNA repair and cell death

    Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells

    Get PDF
    Genome integrity is constantly threatened by DNA lesions arising from numerous exogenous and endogenous sources. Survival depends on immediate recognition of these lesions and rapid recruitment of repair factors. Using laser microirradiation and live cell microscopy we found that the DNA-damage dependent poly(ADP-ribose) polymerases (PARP) PARP-1 and PARP-2 are recruited to DNA damage sites, however, with different kinetics and roles. With specific PARP inhibitors and mutations, we could show that the initial recruitment of PARP-1 is mediated by the DNA-binding domain. PARP-1 activation and localized poly(ADP-ribose) synthesis then generates binding sites for a second wave of PARP-1 recruitment and for the rapid accumulation of the loading platform XRCC1 at repair sites. Further PARP-1 poly(ADP-ribosyl)ation eventually initiates the release of PARP-1. We conclude that feedback regulated recruitment of PARP-1 and concomitant local poly(ADP-ribosyl)ation at DNA lesions amplifies a signal for rapid recruitment of repair factors enabling efficient restoration of genome integrity

    Selective modulation by PARP-1 of HIF-1α-recruitment to chromatin during hypoxia is required for tumor adaptation to hypoxic conditions

    Get PDF
    [Background] The adaptation to hypoxia is mainly controlled by the HIF transcription factors. Increased expression/activity of HIF-1α correlates with poor prognosis in cancer patients. PARP-1 inhibitors are used in the clinic to treat BRCAness breast/ovarian cancer and have been shown to regulate the hypoxic response; therefore, their use could be expanded.[Methods] In this work by integrating molecular/cell biology approaches, genome-wide ChIP-seq, and patient samples, we elucidate the extent to which PARP-1 exerts control over HIF-1-regulated genes.[Results] In human melanoma, PARP-1 and HIF-1α expression are strongly associated. In response to a hypoxic challenge poly(ADP-ribose) (PAR) is synthesized, HIF-1α is post-transcriptionally modified (PTM) and stabilized by PARylation at specific K/R residues located at its C-terminus. Using an unbiased ChIP-seq approach we demonstrate that PARP-1 dictates hypoxia-dependent HIF-recruitment to chromatin in a range of HIF-regulated genes while analysis of HIF-binding motifs (RCGTG) reveals a restriction on the recognition of hypoxia responsive elements in the absence of PARP-1. Consequently, the cells are poorly adapted to hypoxia, showing a reduced fitness during hypoxic induction.[Conclusions] These data characterize the fine-tuning regulation by PARP-1/PARylation of HIF activation and suggest that PARP inhibitors might have therapeutic potential against cancer types displaying HIF-1α over-activation.This work was supported by Junta de Andalucía, project of Excellence from Junta de Andalucía P10-CTS-0662, P12-CTS-383 to FJO, Spanish Ministry of Economy and Competitiveness SAF2012-40011-C02-01, SAF2015-70520- R, RTI2018-098968-B-I00, RTICC RD12/0036/0026 and CIBER Cåncer ISCIII CB16/12/00421 to FJO. EB1s lab is supported by the Basque Department of Industry, Tourism and Trade (Etortek) and the MINECO (CB16/12/00421) grants. Fundación Domingo Martínez (call 2019).Peer reviewe

    Etude des mĂ©canismes de maturation des prĂ©curseurs de tRNA dans la mitochondrie de levure: RNase P et 3’ prĂ©-tRNase mitochondriales

    No full text
    This thesis concerns the study of the enzymatic activities of the mitochondria of the yeast Saccharomyces cerevisiae, responsible for the 5 'and 3' maturation of the tRNAs carried out by RNase P and 3' pre-tRNase, respectively.Most of this work is devoted to the purification of mitochondrial yeast RNase P and the study of its ribonucleic and protein constituents. Then, as part of a study of the structure-function relationships of the ribonucleic component of mitochondrial RNase P, we identified the latter in the mitochondria of various yeasts of the genus Kluyveromyces, evolving very close to the genus Saccharomyces. Finally, we characterized the 3 'mitochondrial pre-tRNase and studied some of its properties.RNase P is a ribonucleoprotein consisting of RNA 9S encoded by a mitochondrial gene (RPM1 gene) and core encoded protein (s). The enzyme has been purified to apparent homogeneity. We have demonstrated that 9S RNA is the ribonucleic component of RNase P. However, "Northern" hybridization experiments on RNA extracted at different stages of enzyme purification, using probes from different regions of the gene. RPM1, showed that the 9S RNA was degraded during the purification, without significantly affecting the activity of the enzyme. On the other hand, the extraction of RNA from the purified RNase P made it possible to isolate an RNA of 70 nucleotides whose sequence corresponds to that of the 3 'end of the 9S RNA. The presence of this fragment in the ribonucleoprotein appears to be sufficient for its in vitro activity. A 63 kDa polypeptide co-purifies with RNase P activity. It has a native gel mass of 250 kDa, suggesting that it could be composed of 4 subunits of the 63 kDa polypeptide and an RNA fragment. 9S of 70 nucl. The 63 kDa polypeptide is revealed with sera from patients with autoimmune diseases. These serum directed against ribonucleoproteins, are in particular capable of recognizing the RNase P of E. coli and Hela cells. Thus, the protein component of RNAse P could have structural homologies with other ribonucleoproteins recognized by this family of antibodies, such as U1-snRNP and thRNP (RNase MRP).To clarify the structure-function relationships of the yeast mitochondrial RNase P RNA, we identified genes equivalent to that of 9S RNA in mitochondria of different species of the genus Kluyveromyces (K. bulgaricus, K. fragilis, K. thermotolerans). ) and S. carlsbergensis, evolutionarily close to the genus Saccharomyces. The RNA gene of these four species was cloned by PCR. We have demonstrated that this gene actually codes for the ribonucleic component of RNase P. Indeed, the presence of RNA correlates perfectly with the enzymatic activity of RNase P in partially purified mitochondrial fractions. The size and sequence of these RNAs were highly variable from one species to another. The only elements of conserved sequences are located in two short regions, one at the 5 'end and the other at the 3' end of the molecule. These two blocks, which represent the only elements of sequences conserved between the RNA of eubacteria and that of yeast mitochondria, are capable of pairing together to form a "pseudo-node" structure. This tertiary folding could be crucial for the function of these RNAs. The sequence alignment of these mitochondrial RNAs allowed us to propose a common model of secondary structure, comparable to that of RNAse P prokaryotic RNAs.We have characterized the endonuclease activity involved in the maturation of the 3' end of mitochondrial tRNAs. Unlike mitochondrial RNase P, the activity of this enzyme does not depend on the presence of a ribonucleic acid. Kinetic studies of maturation, carried out with a tRNA precursor possessing both 5 'and 3' extensions, made it possible to demonstrate the existence of a chronology in the maturation of mitochodrial tRNAs. Indeed, in protein fractions containing both the activity of RNase P and that of 3' pre-tRNase, the 5' ends are removed first, then in a second step, the 3 'pre-tRNase cleaves. the extension 3' of the precursor. Unfortunately, the purification of the 3' pre-tRNase has stumbled upon a problem of stability of this enzyme which has therefore not been studied in greater detail.Ce mĂ©moire porte sur l’étude des activitĂ©s enzymatiques de la mitochondrie de la levure Saccharomyces cerevisiae, responsables de la maturation en 5’ et en 3’ des tRNA rĂ©alisĂ©e par la RNase P et la 3’ prĂ©-tRNase, respectivement.La majeure partie de ce travail est consacrĂ©e Ă  la purification de la RNase P mitochondriale de levure et Ă  l’étude de ses constituants ribonuclĂ©ique et protĂ©ique. Puis, dans le cadre d’une Ă©tude des relations structure-fonctions du composant ribonuclĂ©ique de la RNase P mitochondriale, nous avons identifiĂ© ce dernier dans les mitochondries de diffĂ©rentes levures du genre Kluyveromyces, Ă©volutivement trĂšs proches du genre Saccharomyces. Enfin, nous avons caractĂ©risĂ© la 3’ prĂ©-tRNase mitochondriale et Ă©tudiĂ© quelques-unes de ses propriĂ©tĂ©s.La RNase P est une ribonuclĂ©oprotĂ©ine constituĂ©e du RNA 9S codĂ© par un gĂšne mitochondriale (gĂšne RPM1) et de protĂ©ine(s) codĂ©e(s) par le noyau. L’enzyme a Ă©tĂ© purifiĂ© Ă  une apparente homogĂ©nĂ©itĂ©. Nous avons dĂ©montrĂ© que le RNA 9S est le composant ribonuclĂ©ique de la RNase P. Cependant, des expĂ©riences d’hybridation “Northern” sur le RNA extrait Ă  diffĂ©rentes Ă©tapes de la purification de l’enzyme, en utilisant des sondes de diffĂ©rentes rĂ©gions du gĂšne RPM1, ont montrĂ© que le RNA 9S Ă©tait dĂ©gradĂ© au cours de la purification, sans pour autant affecter de façon significative l’activitĂ© de l’enzyme. D’autre part, l’extraction du RNA Ă  partir de la RNase P purifiĂ©e a permis d’isoler un RNA de 70 nuclĂ©otides dont la sĂ©quence correspond Ă  celle de l’extrĂ©mitĂ© 3’ du RNA 9S. La prĂ©sence de ce fragment dans la ribonuclĂ©oprotĂ©ine semble ĂȘtre suffisante pour son activitĂ© in vitro. Un polypeptide de 63 kDa co-purifie avec l’activitĂ© RNase P. Il a une masse de 250 kDa sur gel natif, suggĂ©rant qu’il pourrait ĂȘtre composĂ© de 4 sous-unitĂ©s du polypeptide de 63 kDa et d’un fragment du RNA 9S de 70 nucl. Le polypeptide de 63 kDa est rĂ©vĂ©lĂ© avec des sĂ©ra de malades atteints de maladies auto-immunes. Ces sĂ©ra dirigĂ©s contre des ribonuclĂ©oprotĂ©ines, sont notamment capables de reconnaˆıtre la RNase P de E. coli et de cellules Hela. Ainsi, le composant protĂ©ique de la RNAse P pourrait avoir des homologies structurales avec d’autres ribonuclĂ©oprotĂ©ines reconnues par cette famille d’anticorps, comme par exemple la U1-snRNP et la thRNP(RNase MRP).Afin de prĂ©ciser les relations structure-fonctions du RNA de la RNase P mitochondriale de levure, nous avons identifiĂ© des gĂšnes Ă©quivalents Ă  celui du RNA 9S dans les mitochondries de diffĂ©rentes espĂšces du genre Kluyveromyces (K. bulgaricus, K. fragilis, K. thermotolerans) et de S. carlsbergensis, Ă©volutivement proches du genre Saccharomyces. Le gĂšne de ce RNA de ces quatre espĂšces a Ă©tĂ© clonĂ© par PCR. Nous avons dĂ©montrĂ© que ce gĂšne code effectivement pour le constituant ribonuclĂ©ique de la RNase P. En effet, la prĂ©sence du RNA corrĂšle parfaitement avec l’activitĂ© enzymatique de la RNase P dans des fractions mitochondriales partiellement purifiĂ©es. La taille et la sĂ©quence de ces RNA se sont rĂ©vĂ©lĂ©es trĂšs variables d’une espĂšce Ă  l’autre. Les seuls Ă©lĂ©ments de sĂ©quences conservĂ©es sont localisĂ©s dans deux courtes rĂ©gions situĂ©es, l’une Ă  l’extrĂ©mitĂ© 5’ et l’autre Ă  l’extrĂ©mitĂ© 3’ de la molĂ©cule. Ces deux blocs qui reprĂ©sentent les seuls Ă©lĂ©ments de sĂ©quences conservĂ©es entre le RNA des eubactĂ©ries et celui des mitochondries de levures, sont capables de s’apparier pour former une structure en “pseudo-nƓud”. Ce repliement tertiaire pourrait ĂȘtre crucial pour la fonction de ces RNA. L’alignement des sĂ©quences de ces RNA mitochondriaux nous a permis de proposer un modĂšle commun de structure secondaire, comparable Ă  celui des RNA des RNAse P procaryotes.Nous avons caractĂ©risĂ© l’activitĂ© endonuclĂ©asique impliquĂ©e dans la maturation de l’extrĂ©mitĂ© 3’ des tRNA mitochondriaux. Contrairement Ă  la RNase P mitochondriale, l’activitĂ© de cet enzyme ne dĂ©pend pas de la prĂ©sence d’un acide ribonuclĂ©ique. Des Ă©tudes cinĂ©tiques de maturation, rĂ©alisĂ©es avec un prĂ©curseur de tRNA possĂ©dant les deux extensions en 5’ et en 3’, ont permis de mettre en Ă©vidence l’existence d’une chronologie dans la maturation des tRNA mitochodriaux. En effet, dans des fractions protĂ©iques contenant Ă  la fois l’activitĂ© de la RNase P et celle de la 3’ prĂ©-tRNase, les extrĂ©mitĂ©s 5’ sont enlevĂ©es en premier, puis dans un deuxiĂšme temps, la 3’ prĂ©-tRNase clive l’extension 3’ du prĂ©curseur. Malheureusement, la purification de la 3’ prĂ©-tRNase a butĂ© sur un problĂšme de stabilitĂ© de cet enzyme qui n’a donc pu ĂȘtre Ă©tudiĂ© de façon plus approfondie

    An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene

    No full text
    International audienc

    Molecular heterogeneity and regulation of poly(ADP-ribose) glycohydrolase.

    No full text
    International audienceWe have recently described the isolation and characterization of bovine cDNA encoding poly(ADP-ribose) glycohydrolase (PARG). We describe here the preparation and characterization of antibodies to PARG. These antibodies have been used to demonstrate the presence of multiple forms of PARG in tissue and cell extracts from bovine, rat, mouse, and insects. Our results indicate that multiple forms of PARG previously reported could result from a single gene. Analysis of PARG in cells in which poly(ADP-ribose) polymerase (PARP) has been genetically inactivated indicates that the cellular content of PARG is regulated independently of PARP

    The PARP superfamily

    No full text
    International audienc

    Purification of Recombinant Human PARP-3

    No full text
    International audienceThe purification of poly(ADP-ribose) polymerase-3 (PARP-3) from overexpressing cells (Sf9 insect cells, Escherichia coli) has been updated to a fast and reproducible two chromatographic steps protocol. After cell lysis, PARP-3 protein from the crude extract is affinity purified on a 3-aminobenzamide Sepharoseℱ chromatographic step. The last contaminants and the 3-methoxybenzamide used to elute PARP-3 from the previous affinity column are removed on the high-performance strong cations exchanger MonoQℱ matrix. This step allows also the concentration of the protein. The columns connected to an ÅKTAℱ purifier system allow the purification of the protein in 3 days with a high-yield recovery. As described in the protocol, more than 3 mg of pure and active human PARP-3 can be obtained from 1.5 L of E. coli culture
    • 

    corecore