16 research outputs found

    Layer-by-layer assembled composite films of side-functionalized poly(3-hexylthiophene) and CdSe nanocrystals: electrochemical, spectroelectrochemical and photovoltaic properties

    No full text
    Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary spectroscopic, electrochemical and spectroelectrochemical investigations of both the functionalized poly(thiophene) and its composite with the nanocrystals, the latter being fabricated using the layer-by-layer (LbL) deposition technique. UV-Vis-NIR and Raman spectroelectrochemical investigations unequivocally show that the onset of the first anodic peak in the cyclic voltammogram of the copolymer can be attributed to the oxidation of the pi-conjugated backbone in the polymer chains. For this reason, it is possible to determine the width and the position of its band gap (corresponding to the pi-pi* transition) by UV-Vis spectroscopy combined with cyclic voltammetry. These studies show that the polymer exhibits a slightly larger band gap with the HOMO level insignificantly lower in energy (by 0.03 eV) as compared to the case of regioregular poly(3-hexylthiophene) of comparable degree of polymerization. Hydrogen bond interactions of the polymer with CdSe(MHT) in the molecular composite result in a hypsochromic shift of the band corresponding to the pi-pi* transition from 504 nm to 488 nm. This can be taken as a spectroscopic manifestation of the conformational changes induced by shortening of the conjugation length. The observed spectral modifications are consistent with electrochemically determined lowering of the polymer HOMO level (from -4.91 eV in the pure polymer to -4.99 eV in the composite). Cyclic voltammetry studies supported by spectroelectrochemistry also show that the redox stability of CdSe(MHT) in the molecular composite with P3HT-co-P3(ODAP)HT is lower than that determined for stearate-capped nanocrystals. Their irreversible oxidation starts at E = +0.7 V vs. Ag/0.1 M Ag(+)i.e. at potentials by ca. 0.3 V lower than the oxidation of stearate stabilized CdSe nanocrystals of the same size. We show that-despite these modifications-the alignment of the HOMO and LUMO levels of the composite components remains appropriate for its use in hybrid solar cells, which is demonstrated by the photovoltaic effect observed for the LbL-processed composite sandwiched between two electrode

    Evidence of a relationship between weight and total length of marine fish in the North-eastern Atlantic Ocean: physiological, spatial and temporal variations

    No full text
    Weight–Body Length relationships (WLR) of 45 fish species (37 Actinopterygii and eight Elasmobranchii) were investigated. A total of 31,167 individuals were caught and their biological parameters measured during the four quarters from 2013 to 2015, on five scientific surveys sampling the North-eastern Atlantic Ocean from the North Sea to the Bay of Biscay (ICES Divisions IVb, IVc, VIId, VIIe, VIIg, VIIh, VIIj, VIIIa and VIIIb). Among 45 tested species, all showed a significant correlation between total length (L) and total weight (W). The influence of sex on WLR was estimated for 39 species and presented a significant sexual dimorphism for 18 species. Condition factor (K) of females was always higher than for males. Moreover, a spatial effect on the WLR according to five ecoregions (the Bay of Biscay, the Celtic Sea, the Western English Channel, the Eastern English Channel and the North Sea), was significant for 18 species among 38 tested species. The temporal effect was tested according to components (year and quarter/season). The seasonality effect on WLR is more frequently significant than the year especially for the Elasmobranchii species, and can be related to the spawning season. Finally, depressiform species (skates, sharks and flatfish) are characterized by positive allometric growth, whereas there is no such clear pattern regarding roundfishes growth, whatever their body shape is

    Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism

    No full text
    Comment inNovel Mitochondrial Mechanisms of Cytarabine Resistance in Primary AML Cells. [Cancer Discov. 2017]International audienceChemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653
    corecore