187 research outputs found

    Effect on signal-to-noise ratio of splitting the continuous contacts of cuff electrodes into smaller recording areas.

    Get PDF
    BackgroundCuff electrodes have been widely used chronically in different clinical applications. This neural interface has been dominantly used for nerve stimulation while interfering noise is the major issue when employed for recording purposes. Advancements have been made in rejecting extra-neural interference by using continuous ring contacts in tripolar topologies. Ring contacts provide an average of the neural activity, and thus reduce the information retrieved. Splitting these contacts into smaller recording areas could potentially increase the information content. In this study, we investigate the impact of such discretization on the Signal-to-Noise Ratio (SNR). The effect of contacts positioning and an additional short circuited pair of electrodes were also addressed.MethodsDifferent recording configurations using ring, dot, and a mixed of both contacts were studied in vitro in a frog model. An interfering signal was induced in the medium to simulate myoelectric noise. The experimental setup was design in such a way that the only difference between recordings was the configuration used. The inter-session experimental differences were taken care of by a common configuration that allowed normalization between electrode designs.ResultsIt was found that splitting all contacts into small recording areas had negative effects on noise rejection. However, if this is only applied to the central contact creating a mixed tripole configuration, a considerable and statistically significant improvement was observed. Moreover, the signal to noise ratio was equal or larger than what can be achieved with the best known configuration, namely the short circuited tripole. This suggests that for recording purposes, any tripole topology would benefit from splitting the central contact into one or more discrete contacts.ConclusionsOur results showed that a mixed tripole configuration performs better than the configuration including only ring contacts. Therefore, splitting the central ring contact of a cuff electrode into a number of dot contacts not only provides additional information but also an improved SNR. In addition, the effect of an additional pair of short circuited electrodes and the "end effect" observed with the presented method are in line with previous findings by other authors

    On the viability of implantable electrodes for the natural control of artificial limbs: Review and discussion

    Get PDF
    The control of robotic prostheses based on pattern recognition algorithms is a widely studied subject that has shown promising results in acute experiments. The long-term implementation of this technology, however, has not yet been achieved due to practical issues that can be mainly attributed to the use of surface electrodes and their highly environmental dependency. This paper describes several implantable electrodes and discusses them as a solution for the natural control of artificial limbs. In this context "natural" is defined as producing control over limb movement analogous to that of an intact physiological system. This includes coordinated and simultaneous movements of different degrees of freedom. It also implies that the input signals must come from nerves or muscles that were originally meant to produce the intended movement and that feedback is perceived as originating in the missing limb without requiring burdensome levels of concentration. After scrutinizing different electrode designs and their clinical implementation, we concluded that the epimysial and cuff electrodes are currently promising candidates to achieving a long-term stable and natural control of robotic prosthetics, provided that communication from the electrodes to the outside of the body is guaranteed

    Hypothermia masks most of the effects of rapid cycling VNS on rat hippocampal electrophysiology

    Get PDF
    AIM. Vagus nerve stimulation (VNS) modulates hippocampal dentate gyrus (DG) electrophysiology and induces hypothermia in freely moving rats. This study evaluated whether hippocampal (CA1) electrophysiology is similarly modulated and to what extent this is associated with VNS-induced hypothermia. METHODS. Six freely moving rats received a first 4 h session of rapid cycling VNS (7 s on/18 s off), while CA1 evoked potentials, EEG and core temperature were recorded. In a second 4 h session, external heating was applied during the 3rd and 4th h of VNS counteracting VNS-induced hypothermia. RESULTS. VNS decreased the slope of the field excitatory postsynaptic potential (fEPSP), increased the population spike (PS) amplitude and latency, decreased theta (4-12 Hz) and gamma (30-100 Hz) band power and theta peak frequency. Normalizing body temperature during VNS through external heating abolished the effects completely for fEPSP slope, PS latency and gamma band power, partially for theta band power and theta peak frequency and inverted the effect on PS amplitude. CONCLUSIONS. Rapid cycle VNS modulates CA1 electrophysiology similarly to DG, suggesting a wide-spread VNS-induced effect on hippocampal electrophysiology. Normalizing core temperature elucidated that VNS-induced hypothermia directly influences several electrophysiological parameters but also masks a VNS-induced reduction in neuronal excitability

    Identification of vagus nerve stimulation parameters affecting rat hippocampal electrophysiology without temperature effects

    Get PDF
    Background: Recent experiments in rats have demonstrated significant effects of VNS on hippocampal excitability but were partially attributed to hypothermia, induced by the applied VNS parameters. Objective: To allow meaningful preclinical research on the mechanisms of VNS and translation of rodent results to clinical VNS trials, we aimed to identify non-hypothermia inducing VNS parameters that significantly affect hippocampal excitability. Methods: VNS was administered in cycles of 30 s including either 0.1, 0.16, 0.25, 0.5, 1.5, 3 or 7 s of VNS ON time (biphasic pulses, 250ms/phase, 1 mA, 30 Hz) and the effect of different VNS ON times on brain temperature was evaluated. VNS paradigms with and without hypothermia were compared for their effects on hippocampal neurophysiology in freely moving rats. Results: Using VNS parameters with an ON time/OFF time of up to 0.5 s/30 s did not cause hypothermia, while clear hypothermia was detected with ON times of 1.5, 3 and 7 s/30 s. Relative to SHAM VNS, the normothermic 0.5 s VNS condition significantly decreased hippocampal EEG power and changed dentate gyrus evoked potentials with an increased field excitatory postsynaptic potential slope and a decreased population spike amplitude. Conclusion: VNS can be administered in freely moving rats without causing hypothermia, while profoundly affecting hippocampal neurophysiology suggestive of reduced excitability of hippocampal neurons despite increased synaptic transmission efficiency. (C) 2020 The Authors. Published by Elsevier Inc

    Attenuation of Hippocampal Evoked Potentials in vivo by Activation of GtACR2, an Optogenetic Chloride Channel

    Get PDF
    Aim GtACR2, a light-activated chloride channel, is an attractive tool for neural inhibition as it can shunt membrane depolarizations. In this study, we assessed the effect of activating GtACR2 on in vivo hippocampal CA1 activity evoked by Schaffer collateral (SC) stimulation. Methods Adult male Wistar rats were unilaterally injected with 0.5 mu L of adeno associated viral vector for induction of GtACR2-mCherry (n = 10, GtACR2 group) or mCherry (n = 4, Sham group) expression in CA1 pyramidal neurons of the hippocampus. Three weeks later, evoked potentials (EPs) were recorded from the CA1 subfield placing an optrode (bipolar recording electrode attached to an optic fiber) at the injection site and a stimulation electrode targeting SCs. Effects of illumination parameters required to activate GtACR2 such as light power densities (LPDs), illumination delays, and light-pulse durations were tested on CA1 EP parameters [population spike (PS) amplitude and field excitatory postsynaptic potential (fEPSP) slope]. Results In the GtACR2 group, delivery of a 10 ms light-pulse induced a negative deflection in the local field potential which increased with increasing LPD. When combined with electrical stimulation of the SCs, light-induced activation of GtACR2 had potent inhibitory effects on CA1 EPs. An LPD of 160 mW/mm(2) was sufficient to obtain maximal inhibition CA1 EPs. To quantify the duration of the inhibitory effect, a 10 ms light-pulse of 160 mW/mm(2) was delivered at increasing delays before the CA1 EPs. Inhibition of EPs was found to last up to 9 ms after the cessation of the light-pulse. Increasing light-pulse durations beyond 10 ms did not result in larger inhibitory effects. Conclusion Precisely timed activation of GtACR2 potently blocks evoked activity of CA1 neurons. The strength of inhibition depends on LPD, lasts up to 9 ms after a light-pulse of 10 ms, and is independent of the duration of the light-pulse given

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    Electrical stimulation of the human optic nerve

    No full text
    ThÚse de doctorat en sciences médicales (neuroscience) (MED 3)--UCL, 200

    Electrodes and chronic optic nerve stimulation

    No full text
    Visual pathways are often schematized as a parallel afferent transmission of pixel image matrices. Suggested interfaces would thus have numerous contacts in close proximity to the target elements. However, well organised tissue reactions would actively keep electrodes away from the neural units. Alternatively, self sizing spiral cuffs were wrapped around the optic nerve of two blind volunteers in an attempt to develop a visual prosthesis. Unexpected features of the optic nerve code have emerged. This interface remained well tolerated for more than ten years. However, there is still a long way to go before to reach useful vision rehabilitation

    Electrodes and chronic optic nerve stimulation

    No full text
    Visual pathways are often schematized as a parallel afferent transmission of pixel image matrices. Suggested interfaces would thus have numerous contacts in close proximity to the target elements. However, well organised tissue reactions would actively keep electrodes away from the neural units. Alternatively, self sizing spiral cuffs were wrapped around the optic nerve of two blind volunteers in an attempt to develop a visual prosthesis. Unexpected features of the optic nerve code have emerged. This interface remained well tolerated for more than ten years. However, there is still a long way to go before to reach useful vision rehabilitation
    • 

    corecore