226 research outputs found
Recent Advances in Hepatitis C Virus Cell Entry
More than 170 million patients worldwide are chronically infected with hepatitis C virus (HCV). Prevalence rates range from 0.5% in Northern European countries to 28% in some areas of Egypt. HCV is hepatotropic, and in many countries chronic hepatitis C is a leading cause of liver disease including fibrosis, cirrhosis and hepatocellular carcinoma. HCV persists in 50–85% of infected patients, and once chronic infection is established, spontaneous clearance is rare. HCV is a member of the Flaviviridae family, in which it forms its own genus. Many lines of evidence suggest that the HCV life cycle displays many differences to that of other Flaviviridae family members. Some of these differences may be due to the close interaction of HCV with its host’s lipid and particular triglyceride metabolism in the liver, which may explain why the virus can be found in association with lipoproteins in serum of infected patients. This review focuses on the molecular events underlying the HCV cell entry process and the respective roles of cellular co-factors that have been implied in these events. These include, among others, the lipoprotein receptors low density lipoprotein receptor and scavenger receptor BI, the tight junction factors occludin and claudin-1 as well as the tetraspanin CD81. We discuss the roles of these cellular factors in HCV cell entry and how association of HCV with lipoproteins may modulate the cell entry process
An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults
The molecular basis of genetic predisposition to pulmonary tuberculosis in adults remains largely elusive. Few candidate genes have consistently been implicated in tuberculosis susceptibility, and no conclusive linkage was found in two previous genome-wide screens. We report here a genome-wide linkage study in a total sample of 96 Moroccan multiplex families, including 227 siblings with microbiologically and radiologically proven pulmonary tuberculosis. A genome-wide scan conducted in half the sample (48 families) identified five regions providing suggestive evidence (logarithm of the odds [LOD] score >1.17; P < 0.01) for linkage. These regions were then fine-mapped in the total sample of 96 families. A single region of chromosome 8q12-q13 was significantly linked to tuberculosis (LOD score = 3.49; P = 3 × 10−5), indicating the presence of a major tuberculosis susceptibility gene. Linkage was stronger (LOD score = 3.94; P = 10−5) in the subsample of 39 families in which one parent was also affected by tuberculosis, whereas it was much lower (LOD score = 0.79) in the 57 remaining families without affected parents, supporting a dominant mode of inheritance of the major susceptibility locus. These results provide direct molecular evidence that human pulmonary tuberculosis has a strong genetic basis, and indicate that the genetic component involves at least one major locus with a dominant susceptibility allele
Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors
<p>Abstract</p> <p>Background</p> <p>Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices.</p> <p>Results</p> <p>We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices.</p> <p>Conclusions</p> <p>This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.</p
The Global Spread of Hepatitis C Virus 1a and 1b: A Phylodynamic and Phylogeographic Analysis
Using phylodynamic and phylogeographic methods, Angelos Hatzakis and colleagues find that the global spread of Hepatitis C virus coincided with widespread use of transfused blood and with the expansion of intravenous drug use
Recommended from our members
Housing Preferences of Asian and Hispanic/Latino Immigrants in the United States: A Melting Pot or Salad Bowl
Several factors affecting household formations of first‐ and second‐generation Asian and Hispanic/Latino immigrants are identified, including contextual social interaction effects. Using household data from the American Housing Survey and Public Use Micro‐data Sample, we find that first‐generation Asian and Hispanic/Latino immigrants are more likely to live in coresidence households; and this is influenced by immigrant gender, age, education, income, employment and density. Education and income are inversely related to coresiding, while higher immigrant density increases the propensity to coreside. Contextual effects reveal that neighborhoods with a relatively large Caucasian average household size increase coresidence behavior among immigrants; and the income of Caucasians living in the area is inversely related to immigrant coresiding behavior. Second‐generation Asian immigrants are more likely to live independently, while second‐generation Hispanic/Latino immigrants have a higher propensity to coreside; however, they are influenced contextually by geographic household and income patterns. We further specify findings by considering local housing price, the fusion of immigrants in the United States, agglomeration of immigrants in central city and a comparison between immigrants in United States and similarly aged natives in China. Our results are robust to potential sample‐selection bias and social interaction boundary selection bias
Batch effect correction for genome-wide methylation data with Illumina Infinium platform
<p>Abstract</p> <p>Background</p> <p>Genome-wide methylation profiling has led to more comprehensive insights into gene regulation mechanisms and potential therapeutic targets. Illumina Human Methylation BeadChip is one of the most commonly used genome-wide methylation platforms. Similar to other microarray experiments, methylation data is susceptible to various technical artifacts, particularly batch effects. To date, little attention has been given to issues related to normalization and batch effect correction for this kind of data.</p> <p>Methods</p> <p>We evaluated three common normalization approaches and investigated their performance in batch effect removal using three datasets with different degrees of batch effects generated from HumanMethylation27 platform: quantile normalization at average β value (QNβ); two step quantile normalization at probe signals implemented in "lumi" package of R (lumi); and quantile normalization of A and B signal separately (ABnorm). Subsequent Empirical Bayes (EB) batch adjustment was also evaluated.</p> <p>Results</p> <p>Each normalization could remove a portion of batch effects and their effectiveness differed depending on the severity of batch effects in a dataset. For the dataset with minor batch effects (Dataset 1), normalization alone appeared adequate and "lumi" showed the best performance. However, all methods left substantial batch effects intact in the datasets with obvious batch effects and further correction was necessary. Without any correction, 50 and 66 percent of CpGs were associated with batch effects in Dataset 2 and 3, respectively. After QNβ, lumi or ABnorm, the number of CpGs associated with batch effects were reduced to 24, 32, and 26 percent for Dataset 2; and 37, 46, and 35 percent for Dataset 3, respectively. Additional EB correction effectively removed such remaining non-biological effects. More importantly, the two-step procedure almost tripled the numbers of CpGs associated with the outcome of interest for the two datasets.</p> <p>Conclusion</p> <p>Genome-wide methylation data from Infinium Methylation BeadChip can be susceptible to batch effects with profound impacts on downstream analyses and conclusions. Normalization can reduce part but not all batch effects. EB correction along with normalization is recommended for effective batch effect removal.</p
Standardization of cytokine flow cytometry assays
BACKGROUND: Cytokine flow cytometry (CFC) or intracellular cytokine staining (ICS) can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online). RESULTS: Three sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC) were shipped to various sites, where ICS assays using cytomegalovirus (CMV) pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results (CD4(+)cytokine(+ )cells and CD8(+)cytokine(+ )cells) were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template. Mean inter-laboratory coefficient of variation (C.V.) ranged from 17–44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC) yielded lower inter-lab C.V.'s than whole blood. Centralized analysis (using a dynamic gating template) reduced the inter-lab C.V. by 5–20%, depending upon the experiment. The inter-lab C.V. was lowest (18–24%) for samples with a mean of >0.5% IFNγ + T cells, and highest (57–82%) for samples with a mean of <0.1% IFNγ + cells. CONCLUSION: ICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more consistent results than shipped whole blood. Analysis, particularly gating, is a significant source of variability, and can be reduced by centralized analysis and/or use of a standardized dynamic gating template. Use of pre-aliquoted lyophilized reagents for stimulation and staining can provide further standardization to these assays
Interferon Regulatory Factor 8 Regulates Pathways for Antigen Presentation in Myeloid Cells and during Tuberculosis
IRF8 (Interferon Regulatory Factor 8) plays an important role in defenses against intracellular pathogens, including several aspects of myeloid cells function. It is required for ontogeny and maturation of macrophages and dendritic cells, for activation of anti-microbial defenses, and for production of the Th1-polarizing cytokine interleukin-12 (IL-12) in response to interferon gamma (IFNγ) and protection against infection with Mycobacterium tuberculosis. The transcriptional programs and cellular pathways that are regulated by IRF8 in response to IFNγ and that are important for defenses against M. tuberculosis are poorly understood. These were investigated by transcript profiling and chromatin immunoprecipitation on microarrays (ChIP-chip). Studies in primary macrophages identified 368 genes that are regulated by IRF8 in response to IFNγ/CpG and that behave as stably segregating expression signatures (eQTLs) in F2 mice fixed for a wild-type or mutant allele at IRF8. A total of 319 IRF8 binding sites were identified on promoters genome-wide (ChIP-chip) in macrophages treated with IFNγ/CpG, defining a functional G/AGAAnTGAAA motif. An analysis of the genes bearing a functional IRF8 binding site, and showing regulation by IFNγ/CpG in macrophages and/or in M. tuberculosis-infected lungs, revealed a striking enrichment for the pathways of antigen processing and presentation, including multiple structural and enzymatic components of the Class I and Class II MHC (major histocompatibility complex) antigen presentation machinery. Also significantly enriched as IRF8 targets are the group of endomembrane- and phagosome-associated small GTPases of the IRG (immunity-related GTPases) and GBP (guanylate binding proteins) families. These results identify IRF8 as a key regulator of early response pathways in myeloid cells, including phagosome maturation, antigen processing, and antigen presentation by myeloid cells
- …