2,854 research outputs found

    Fully Dynamic Matching in Bipartite Graphs

    Full text link
    Maximum cardinality matching in bipartite graphs is an important and well-studied problem. The fully dynamic version, in which edges are inserted and deleted over time has also been the subject of much attention. Existing algorithms for dynamic matching (in general graphs) seem to fall into two groups: there are fast (mostly randomized) algorithms that do not achieve a better than 2-approximation, and there slow algorithms with \O(\sqrt{m}) update time that achieve a better-than-2 approximation. Thus the obvious question is whether we can design an algorithm -- deterministic or randomized -- that achieves a tradeoff between these two: a o(m)o(\sqrt{m}) approximation and a better-than-2 approximation simultaneously. We answer this question in the affirmative for bipartite graphs. Our main result is a fully dynamic algorithm that maintains a 3/2 + \eps approximation in worst-case update time O(m^{1/4}\eps^{/2.5}). We also give stronger results for graphs whose arboricity is at most \al, achieving a (1+ \eps) approximation in worst-case time O(\al (\al + \log n)) for constant \eps. When the arboricity is constant, this bound is O(logn)O(\log n) and when the arboricity is polylogarithmic the update time is also polylogarithmic. The most important technical developement is the use of an intermediate graph we call an edge degree constrained subgraph (EDCS). This graph places constraints on the sum of the degrees of the endpoints of each edge: upper bounds for matched edges and lower bounds for unmatched edges. The main technical content of our paper involves showing both how to maintain an EDCS dynamically and that and EDCS always contains a sufficiently large matching. We also make use of graph orientations to help bound the amount of work done during each update.Comment: Longer version of paper that appears in ICALP 201

    Conducting unattended home sleep studies in children with narcolepsy and healthy matched controls: a feasibility study

    Get PDF
    Introduction: We investigated the technical feasibility and acceptability of conducting unattended home sleep studies for research purposes in children with and without narcolepsy. Methods: 23 children with narcolepsy (age: 8-15 years) and 23 healthy gender and age-matched controls were recruited. As part of a larger descriptive study called ‘The Paediatric Narcolepsy Project’, we aimed to investigate the differences in sleep architecture between children with and without narcolepsy. Children underwent home polysomnography (PSG) using a portable PSG system (Embla® Systems). A standard montage was used to measure sleep architecture with nine EEG channels (F3, F4, C3, Cz, C4, O1, O2, M1, M2), two electro-oculography (EOG) and two electromyography (EMG) channels. All children were set up in their own homes by the researcher. Study failure was defined as sleep recordings with less than four hours of interpretable sleep data. Four hours of sleep was deemed acceptable to capture two sleep cycles. Failed home studies were classified into three main areas of sensor removal, equipment failure or battery failure. Results: 22/23 children with narcolepsy (male=15, female=8) underwent home PSG. One child declined due to a previous negative PSG experience in hospital. Similarly, 22/23 matched controls underwent the sleep recording. One child became unwell during the set up, so did not proceed.16/22 (73%) of the children with narcolepsy were successfully studied and all of the control children were successfully studied. Discussion: This research has shown that conducting unattended home sleep studies to measure sleep architecture in children with narcolepsy and healthy controls for research purposes is feasible and is tolerated by the majority of children. However, our data show that unattended home sleep studies carry a risk of data loss, even when set up in the home by a trained researcher

    Predicting the long-term impact of antiretroviral therapy scale-up on population incidence of tuberculosis.

    Get PDF
    OBJECTIVE: To investigate the impact of antiretroviral therapy (ART) on long-term population-level tuberculosis disease (TB) incidence in sub-Saharan Africa. METHODS: We used a mathematical model to consider the effect of different assumptions about life expectancy and TB risk during long-term ART under alternative scenarios for trends in population HIV incidence and ART coverage. RESULTS: All the scenarios we explored predicted that the widespread introduction of ART would initially reduce population-level TB incidence. However, many modelled scenarios projected a rebound in population-level TB incidence after around 20 years. This rebound was predicted to exceed the TB incidence present before ART scale-up if decreases in HIV incidence during the same period were not sufficiently rapid or if the protective effect of ART on TB was not sustained. Nevertheless, most scenarios predicted a reduction in the cumulative TB incidence when accompanied by a relative decline in HIV incidence of more than 10% each year. CONCLUSIONS: Despite short-term benefits of ART scale-up on population TB incidence in sub-Saharan Africa, longer-term projections raise the possibility of a rebound in TB incidence. This highlights the importance of sustaining good adherence and immunologic response to ART and, crucially, the need for effective HIV preventive interventions, including early widespread implementation of ART

    Comparison of Two Mathematical Models for Greenhouse Gas Emission from Membrane Bioreactors

    Get PDF
    In this study two mathematical models (Model I and Model II), able to predict the nitrous oxide (N2O) and carbon dioxide (CO2) emission from an University Cape Town (UCT) \u2013 membrane bioreactor (MBR) plant, have been compared. Model I considers the N2O production only during the denitrification. Model II takes into account the two ammonia-oxidizing bacteria (AOB) formation pathways for N2O. Both models were calibrated adopting real data. Results highlight that Model II had a better capability of reproducing the measured data especially in terms of N2O model outputs. Indeed, the average efficiency related to the N2O model outputs was equal to 0.3 and 0.38 for Model I and Model II respectively

    Allometric Scaling of the Active Hematopoietic Stem Cell Pool across Mammals

    Get PDF
    BACKGROUND: Many biological processes are characterized by allometric relations of the type Y = Y (0) M(b) between an observable Y and body mass M, which pervade at multiple levels of organization. In what regards the hematopoietic stem cell pool, there is experimental evidence that the size of the hematopoietic stem cell pool is conserved in mammals. However, demands for blood cell formation vary across mammals and thus the size of the active stem cell compartment could vary across species. METHODOLOGY/PRINCIPLE FINDINGS: Here we investigate the allometric scaling of the hematopoietic system in a large group of mammalian species using reticulocyte counts as a marker of the active stem cell pool. Our model predicts that the total number of active stem cells, in an adult mammal, scales with body mass with the exponent ¾. CONCLUSION/SIGNIFICANCE: The scaling predicted here provides an intuitive justification of the Hayflick hypothesis and supports the current view of a small active stem cell pool supported by a large, quiescent reserve. The present scaling shows excellent agreement with the available (indirect) data for smaller mammals. The small size of the active stem cell pool enhances the role of stochastic effects in the overall dynamics of the hematopoietic system

    Feasibility of the porous zone approach to modelling vegetation in CFD

    Get PDF
    Vegetation within stormwater ponds varies seasonly and its presence affects the flow field, which in turn affects the pond’s Residence Time Distribution and its effectiveness at pollutant removal. Vegetated flows are complex and, as a result, few suitable tools exist for evaluating realistic stormwater pond designs. Recent research has suggested using a porous zone to represent vegetation within a CFD model, and this paper investigates the feasibility of this approach using ANSYS Fluent. One of the main benefits of using a porous zone is the ability to derive the relevant parameters from the known physical characteristics of stem diameter and porosity using the Ergun equation. A sensitivity analysis on the viscous resistance factor 1/α1/α and the inertial resistance factor C2C2 has been undertaken by comparing model results to data collected from an experimental vegetated channel. Best fit values of C2C2 were obtained for a range of flow conditions including emergent and submerged vegetation. Results show the CFD model to be insensitive to 1/α1/α but very sensitive to values of C2C2. For submerged vegetation, values of C2C2 derived from the Ergun equation are under-predictions of best-fit C2C2 values as only the turbulence due to the shear layer is represented. The porous zone approach does not take into account turbulence generated from stem wakes such that no meaningful predictions for emergent vegetation were obtained. C2C2 values calculated using a force balance show better agreement with best-fit C2C2 values than those derived from the Ergun equation. Manually fixing values of kk and εε within the porous zone of the model shows initial promise as a means of taking stem wakes into account

    Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process

    Get PDF
    Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.Fil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Zamponi, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Vranych, Cecilia Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentin
    corecore