27 research outputs found
Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro
In this study the in vitro activities of seven antibiotics (ciprofloxacin, ceftazidime, tetracycline, trimethoprim, sulfamethoxazole, polymyxin B and piperacillin) and six phytochemicals (protocatechuic acid, gallic acid, ellagic acid, rutin, berberine and myricetin) against five P. aeruginosa isolates, alone and in combination are evaluated. All the phytochemicals under investigation demonstrate potential inhibitory activity against P. aeruginosa. The combinations of sulfamethoxazole plus protocatechuic acid, sulfamethoxazole plus ellagic acid, sulfamethoxazole plus gallic acid and tetracycline plus gallic acid show synergistic mode of interaction. However, the combinations of sulfamethoxazole plus myricetin shows synergism for three strains (PA01, DB5218 and DR3062). The synergistic combinations are further evaluated for their bactericidal activity against P. aeruginosa ATCC strain using time-kill method. Sub-inhibitory dose responses of antibiotics and phytochemicals individually and in combination are presented along with their interaction network to suggest on the mechanism of action and potential targets for the phytochemicals under investigation. The identified synergistic combinations can be of potent therapeutic value against P. aeruginosa infections. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals)
Global, regional, and national burden of disorders affecting the nervous system, 1990â2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378â521), affecting 3·40 billion (3·20â3·62) individuals (43·1%, 40·5â45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7â26·7) between 1990 and 2021. Age-standardised rates of deaths per 100â000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6â38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5â32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7â2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990â2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44â2·85) in 2010 to 2·88 billion (2·64â3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7â17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8â6·3) in 2020 and 7·2% (4·7â10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0â234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7â198·3]), neonatal disorders (186·3 million [162·3â214·9]), and stroke (160·4 million [148·0â171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3â51·7) and for diarrhoeal diseases decreased by 47·0% (39·9â52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54â1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5â9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0â19·8]), depressive disorders (16·4% [11·9â21·3]), and diabetes (14·0% [10·0â17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7â27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6â63·6) in 2010 to 62·2 years (59·4â64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6â2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990â2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 riskâoutcome pairs. Pairs were included on the basis of data-driven determination of a riskâoutcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each riskâoutcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of riskâoutcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7â9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4â9·2]), smoking (5·7% [4·7â6·8]), low birthweight and short gestation (5·6% [4·8â6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8â6·0]). For younger demographics (ie, those aged 0â4 years and 5â14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9â27·7]) and environmental and occupational risks (decrease of 22·0% [15·5â28·8]), coupled with a 49·4% (42·3â56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9â21·7] for high BMI and 7·9% [3·3â12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6â1·9) for high BMI and 1·3% (1·1â1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4â78·8) for child growth failure and 66·3% (60·2â72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Global, regional, and national burden of disorders affecting the nervous system, 1990â2021: a systematic analysis for the Global Burden of Disease Study 2021
BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378â521), affecting 3·40 billion (3·20â3·62) individuals (43·1%, 40·5â45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7â26·7) between 1990 and 2021. Age-standardised rates of deaths per 100â000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6â38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5â32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7â2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
New multi-target based therapeutics against an opportunistic superbug
Pseudomonas aeruginosa (P. aeruginosa) is one of the most opportunistic and challenging Gram-negative pathogens, often resistant to a number of widely used antibiotics even when combination therapies are administered, thereby joining the ranks of âsuperbugsâ. Hence, there is a dearth of treatment options for community-acquired and nosocomial Pseudomonas infections due to several rapidly emerging multidrug-resistant phenotypes along with the complexity of rising resistance rates. Taken together, it is imperative to discover more potent drugs and novel therapeutic strategies to combat the infections caused by this superbug. It is recently highly appreciated that instead of inhibition of an individual target in the disease-associated network, modulating activity of multiple targets may be required to achieve optimal therapeutic benefit against robust pathogens. Multi-target therapeutics can be developed by two distinct approaches, a combination of two or more different agents to inhibit dissimilar targets or designing a multi-target specific single hybrid entity. The research presented here utilized both combinations based searches and designing hybrid compounds with pre-defined promiscuity methods for the discovery of novel therapeutics against the study pathogen.
In the search for more effective strategies to combat the Pseudomonas infections, in vitro activities of antibiotics and natural dietary phytochemicals alone and in combination against P. aeruginosa strains were investigated using the microtitration checkerboard method, fractional inhibitory concentration (FIC) indices and time-kill analysis. Furthermore, to gain a new understanding of the molecular mechanism of synergistic interactions identified from the above study various susceptibility testing methods, confirmatory biochemical assays were performed and also validated using computational evaluation involving molecular docking studies. Additionally, expansion of the phytochemical-antibiotic interaction profiles were also carried out with various classes of antibiotics and phytochemicals to understand the interaction patterns by establishing a novel interaction network that provides a baseline to identify the mechanism of action of the phytochemicals and molecular mechanism of synergy. The above findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals). These combinations based searches aided in identifying novel synergistic phytochemical-antibiotic combinations, an alternate therapeutic option for the treatment of Pseudomonas infections.
The second part of the project involved hypothesis driven multi-target drug design against P. aeruginosa and computational evaluation of the designed hybrid compounds using various computer-aided drug design methodologies combining homology modelling, physico-chemical, stereo-electronic properties predictions, molecular docking and dynamics simulations. Drug relevant physico-chemical properties and toxicity risks predicted using in silico based prediction toolkits, suggests that the designed hybrid compounds potentially qualify as suitable drug candidates. The stereo-electronic properties such as HOMO, LUMO and MEP maps of the hybrid compounds calculated using quantum chemical methods, correlate well with identified common pharmacophoric features required for the multi-site interactions. Docking and dynamics simulation studies reveal that the designed hybrid compounds have favourable binding affinity and stability in their respective binding-site cavities by forming strong hydrogen bonds and hydrophobic interactions with key active site residues. Significantly, the above results for the first time demonstrate an approach for rational design of multi-specificity hybrid scaffolds based on the structural optimization of phytochemicals/antibiotics. Looking forward the designed hybrid compounds could serve as a prospective lead in the antibacterial multi-target drug discovery.Doctor of Philosophy (MAE
Drug-herb interactions on pseudomonas aeruginosa
The aim of this study was to determine if synergism was observed for various
combinations of antibiotics with the phytomedicines against American Type Culture
Collection (ATCC) strain of P.aeruginosa. The minimum inhibitory concentration
(MIC) of these antibiotics and phytomedicines were determined by microdilution method. The results from both the checkerboard and killing curve methodologies by microdilution method were compared. The results of this study indicate that against P.aeruginosa, synergism is observed in combination with some western antibiotics and phytomedicines. Synergism appears to be maintained even at very high MICs with drug concentrations within achievable therapeutic ranges. With current definitions of synergism there was absolute correlation between the results obtained by the checkerboard and killing curve methodologies, with the fractional inhibitory
concentration indices and killing curves resulting in synergism. No antagonism was
observed.Master of Science (Biomedical Engineering
Cell-Free Optogenetic Gene Expression System
Optogenetic
tools provide a new and efficient way to dynamically
program gene expression with unmatched spatiotemporal precision. To
date, their vast potential remains untapped in the field of cell-free
synthetic biology, largely due to the lack of simple and efficient
light-switchable systems. Here, to bridge the gap between cell-free
systems and optogenetics, we studied our previously engineered one
component-based blue light-inducible <i>Escherichia coli</i> promoter in a cell-free environment through experimental characterization
and mathematical modeling. We achieved >10-fold dynamic expression
and demonstrated rapid and reversible activation of the target gene
to generate oscillatory response. The deterministic model developed
was able to recapitulate the system behavior and helped to provide
quantitative insights to optimize dynamic response. This <i>in
vitro</i> optogenetic approach could be a powerful new high-throughput
screening technology for rapid prototyping of complex biological networks
in both space and time without the need for chemical induction