39 research outputs found

    Развитие ионизационного монитора поперечного сечения протонного пучка линейного ускорителя ИЯИ РАН

    Get PDF
    Для обеспечения прозрачных измерений поперечного сечения и профилей токовых импульсов в широком диапазоне энергий и амплитуд разработан и установлен на ускорителе специальный ионизационный монитор поперечного сечения (ИМПС) на остаточном газе. ИМПС оборудован зеркально-линзовым трактом для транспортировки изображения пучка от детектора до ТВ-камеры и защиты ПЗС-матрицы и электроники ТВ-камеры от бомбардировки нейтронами и γ-квантами. В работе приводится схема и описание датчика, а также некоторые детали программного и аппаратного обеспечения системы съема и обработки изображений. Представлены полученные результаты измерений импульсного тока протонов.Для забезпечення прозорих вимірів поперечного переріза й профілів струмових імпульсів у широкому діапазоні енергій і амплітуд розроблений і встановлений на прискорювачі спеціальний іонізаційний монітор поперечного переріза (ІМПС) на залишковому газі. ІМПС обладнаний дзеркально-лінзовим трактом для транспортування зображення пучка від детектора до ТВ-камери і захисту Пзс-матриці й електроніки ТВ-камеры від бомбардування нейтронами і γ-квантами. У роботі приводиться схема й опис датчика, а також деякі деталі програмного й апаратного забезпечення системи знімання й обробки зображень. Представлено отримані результати вимірів імпульсного струму протонів.To provide non-intercepting measurements of beam pulse transverse section and profile the special residual gas ion transverse section monitor (ITSM) for wide energy and amplitude range is developed and installed on the accelerator. ITSM is provided by lens-mirror line for transport beam image from the detector to TV camera and saving CCD and electronics of TV camera from neutron and γ hitting. The ITSM functioning details and image processing system are described. The available results of beam pulse measurements are presented

    New species of Colletotrichum from wild Poaceae and Cyperaceae plants in Iran

    Get PDF
    Twenty-two Colletotrichum strains were isolated from anthracnose symptoms or leaf spots on leaves of various wild Poaceae and Cyperaceae plants collected in three provinces of Iran and tentatively identified as belonging to the Graminicola species complex based on morphology. All strains were studied via a polyphasic approach combining colony characteristics, morphology and phylogeny inferred from multi-locus sequences, including the nuc rDNA ITS1-5.8S-ITS2 (ITS), partial sequences of the β-tubulin (tub2), actin (act), manganese superoxide dismutase 2 (sod2), DNA lyase 2 (apn2) genes, a 200-bp intron of the glyceraldehyde-3-phosphate dehydrogenase (gapdh), and the intergenic spacer between the apn2 gene and the mat1 idiomorph (apn2/mat1). Six species were distinguished, including three new species, namely C. caspicum, C. persicum, and C. sacchari, and three previously described species, C. cereale, C. nicholsonii and C. sublineola. Comprehensive morphological descriptions and illustrations are provided for all species. Furthermore, this study provided new insights into the distribution and host range of known species

    Fungal Planet description sheets: 785– 867

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.)on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina ontreebranch. Ecuador, Ganoderma chocoense ontreetrunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixedforest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens onsoilinmixedforest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris fromsoil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) fromsoil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha . Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.)on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov .), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica fromunidentifiedvine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.)fromsoil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from officeair. Vietnam, Fistulinella olivaceoalba onsoil. Morphological and culture characteristics along with DNA barcodes are provided Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.)on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina ontreebranch. Ecuador, Ganoderma chocoense ontreetrunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixedforest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens onsoilinmixedforest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris fromsoil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) fromsoil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.)on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov .), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica fromunidentifiedvine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.)fromsoil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from officeair. Vietnam, Fistulinella olivaceoalba onsoil. Morphological and culture characteristics along with DNA barcodes are provided

    Infection experiments of Pyrenophora teres f. maculata on cultivated and wild barley indicate absence of host specificity

    No full text
    It is important to investigate the possibility of pathogen transmission between cultivated and uncultivated hosts due to the role of the latter in pathogen evolution and the creation of new pathotypes which may break resistance genes of cultivated hosts. Wild hosts can also act as a pathogen reservoir offseason and cause pathogen survival. Spot form of net blotch (SFNB), caused by the fungus Pyrenophora teres f. maculata (PTM), is an important foliar disease of barley worldwide. In this study, 19 isolates from barley and Hordeum murinum were identified as P. teres based on ITS regions and gpd sequence and 17 of these isolates were identified as the sub-species PTM based on PCR assay. In order to evaluate the pathogenicity of PTM isolates obtained from H. murinum on barley as well barley PTM isolates on H. murinum, three barley isolates and two H. murinum isolates were inoculated on one H. murinum line and four barley cultivars including Local, Jolge, Zahak and Oksin, which were previously identified as sensitive, semi-sensitive, semi-resistant and resistant to PTM, respectively. The net blotch severity was scored based on a 1–9 scale. ANOVA showed that interaction between hosts and isolates was not different significantly (Fisher’s test, P = 0.05) which means that each isolate had the same pathogenic behavior on both barley and H. murinum. Therefore, it is possible to transfer pathogens from wild barley to barley as well as in the opposite direction and H. murinum can be considered a threat to barley because of its potential as a PTM reservoir between two growing seasons as well as creating new pathotypes

    Effects of Ewe Oil in Media for Mass Production of Tricephalobus (Nematoda: Rhabditida)

    No full text
    ABSTRACT The Media WA 2%, WA 2% + Ewe oil, WA 2% + K 2 HPO 4 , SDA (Sabouraud 4% Dextrose Agar), SDA + K 2 HPO 4 , SDA + Ewe oil, NA, NA + K 2 HPO 4 and NA + Ewe oil were used for mass production of Tricephalobus. One mL Ewe oil extracted from milk was added to the media 2% WA + Ewe oil and NA + Ewe oil and incubated at 25 o C for one week. The media were monitored every 24 h. Juvenile and mature nematodes in WA 2% amended with Ewe oil and the other media were counted after one week. These results showed that the reproduction of nematodes in WA 2% + Ewe oil was much more in comparison with other media. The experiment was repeated three times. These results indicated that Ewe oil was a better medium than that of cholesterol for mass production. This is the first report of using Ewe oil in mass production of this nematode and this method is advisable for it's mass production

    Taxonomic study on the grapevine endophytic fungi in west Azerbaijan

    No full text
    Endophytic fungi are microorganisms that colonize healthy plant tissues inter-and/or intra-cellulary,persisting for the whole or part of its life cycle without causing disease symptoms in the host plant. In spite of their major impact in plant population and communities, they are among the poorly understands group of fungi and there is little know about their abundance, habitat, host preference, ecological impact and biodiversity. Also hope of finding unique secondary metabolites and enzymes that affect plants, herbivores, microbes make their application possible in medicine, agriculture and industry adds to they role and important, so in this study and in order to identification of the endophytic fungi of grapevine, during summer and autumn seasons in 2011, samples from healthy shoots and leaves were collected from the Urmia and Sardasht regions in west Azerbaijan province. Firstly, plant part washed with running tap water for about 15 min before surface treatments. Afterwards, plant parts were washed 4-5 times with sterile distilled water, then surface sterilized for 1 minute in 70% ethanol followed by 15 minutes in 3% sodium hypochlorite, and finally were washed 4-5 times with sterile distilled water. Sterilized plant materials were cut into small pieces and transferred on PDA medium supplemented with streptomycin sulphate. Plates were incubated under constant darkness at 25°C for 1-2 months. Fungi growing were purified with using hyphal tip and single spore methods. Fungal isolates were identified in standard conditions and based on morphological data and sequence data of ITS-rDNA. In this paper viz. Alternaria brassicicola, A. chlamydospora, Aspergillus niger, Emericella nidulans, Beauveria bassiana, Bipolaris spicifera, Epicoccum nigrum, Mucor plumbeus, Phoma glomerata, Rhizoctonia solani, Trichothecium roseum, Truncatella angustata and Ulocladium atrum are introduced. Alternaria species had frequently isolated among the mentioned species. This is the first study on the identification of endophytic fungi from grapevine trees in Iran

    Species pattern and phylogenetic relationships of Trichoderma strains in rice fields of Southern Caspian Sea, Iran

    No full text
    As a first step of a project aimed at the identification of potential biocontrol agents of Rhizoctonia solani, the rice sheath blight fungus, we surveyed the biodiversity of the genus Trichoderma based on sequence of the internal transcribed spacer (ITS) 1 and 2 of the ribosomal RNA gene cluster in paddy fields in Mazandaran province, Northern Iran. Amongst the six obtained species of Trichoderma, T. harzianum and T. virens proved to be the most frequent species in this habitat. Sequence alignment and phylogenetic analysis revealed that the T. harzianum isolates can be divided into 14 different ITS genotypes clustering in four groups. Our results are in agreement with previous molecular studies, which also revealed that T. harzianum is a complex species comprising more or less different ITS genotypes. T. virens was not as diverse as T. harzianum and three different genotypes were distinguished which constituted only one cluster. All T. atroviride and T. hamatum strains had identical ITS sequences

    In silico maturation of affinity and selectivity of DNA aptamers against aflatoxin B1 for biosensor development

    No full text
    A high affinity and selectivity DNA aptamer for aflatoxin B1 (AFB1) was designed through Genetic Algorithm (GA) based in silico maturation (ISM) strategy. The sequence of a known AFB1 aptamer (Patent: PCT/CA2010/001292, Apt1) applied as a probe in many aptasensors was modified using seven GA rounds to generate an initial library and three different generations of ss DNA oligonucleotides as new candidate aptamers. Molecular docking methodology was used to screen and analyze the best aptamer�AFB1 complexes. Also, a new pipeline was proposed to faithfully predict the tertiary structure of all single stranded DNA sequences. By the second generation, aptamer Apt1 sequence was optimized in the local search space and five aptamers including F20, g12, C52, C32 and H1 were identified as the best aptamers for AFB1. The selected aptamers were applied as probes in an unmodified gold nanoparticles-based aptasensor to evaluate their binding affinity to AFB1 and their selectivity against other mycotoxins (aflatoxins B2, G1, G2, M1, ochratoxin A and zearalenone). In addition, a novel direct fluorescent anisotropy aptamer assay was developed to confirm the binding interaction of the selected aptamers over AFB1. The ISM allowed the identification of an aptamer, F20, with up to 9.4 and 2 fold improvement in affinity and selectivity compared to the parent aptamer, respectively. © 2020 Elsevier B.V

    Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp.

    No full text
    Trichoderma species and fluorescent Pseudomonas spp. have been reported to induce systemic resistance in plants. In this study the effectiveness of a combination of these biological control agents on the efficacy of induced resistance was investigated in cucumber and the model plant Arabidopsis thaliana. Trichoderma harzianum Tr6, and Pseudomonas sp. Ps14, both isolated from the rhizosphere of cucumber, were tested as a single application and in combination for their abilities to elicit induced resistance in cucumber against Fusariumoxysporum f. sp. radicis cucumerinum and in A. thaliana against Botrytis cinerea. The combination of Tr6 and Ps14 induced a significantly higher level of resistance incucumber,whichwas associatedwiththe primedexpression of a set of defense-related genes upon challenge with Fusarium. In Arabidopsis both Ps14 and Tr6 triggered ISR against B. cinerea but their combination did not show enhanced effects. In the induced systemic resistance-defective Arabidopsis mutant myb72, none of the treatments protected against B. cinerea,whereas in the SA-impaired mutant sid2 all treatments were effective. Taken together, these results indicate that in Arabidopsis Ps14 and Tr6 activate the same signaling pathway and thus have no enhanced effect in combination. The enhanced protection in cucumber by the combination is most likely due to activation of different signaling pathways by the two biocontrol agents
    corecore