9 research outputs found

    A Study of Errors in the Pronunciation of English Sounds in Adamawa Television, Yola and Gotel Television, Yola, Nigeria

    Get PDF
    This study examined errors in the pronunciation of English sounds in Adamawa Television, Yola and Gotel Television, Yola, Nigeria. This was to identify pronunciation errors by programme presenters, their guests or other participants in various programmes in the two television stations within a given time frame. ‘Behaviourist Theory of Language Transfer’ by Ormrod (1990) was adopted as the theoretical framework for the study. The theory implied that transfer of language features depend on how similar the learning and transfer tasks are or where identical elements are concerned in the influencing and influenced language. In other words, errors in sounds occur because of the absence of such sounds in the speakers’ mother tongue thereby pronouncing any sound on its behalf with or without some degree of resemblance. Because of the sound conflicts mostly found between source and target languages, speakers often build English sound systems from their first language. The finding shows that errors of addition, subtraction, interchanging and omission were realized. The study recommends strategies that presenters and in fact, speakers with pronunciation errors as a result of cross-linguistic phonological influence will follow to possibly overcome the pronunciation errors; such that presenters and other participants in programmes to be encouraged to speak confidently and practice pronouncing difficult words correctly and regularly

    Mineral Matter in Nigerian Coals and Tar Sand and Their Implications in Binary Blend Formulation and Co-Carbonisation

    Get PDF
    In blend simulation for metallurgical applications, the knowledge of the type and amount of mineral matter in coal and other additives, as well as their derivatives as a result of combustion is important in assessing the coke quality and blast furnace efficiency. X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques were used in assessing the mineral matter contents and oxides produced up on combustion of the following Nigerian coals: Afuze (AFZ), Garin-Maiganga (GMG), Lamza (LMZ), Shankodi-Jangwa (SKJ), and Chikila (CHK) in addition to a tar sand from Ondo (OTS). Coal samples from Afuze (AFZ) and Chikila (CHK) were found to contain quartz, hematite, and anhydride as the dominant minerals. The Garin-Maiganga coal sample (GMG) was found to contain quartz, magnetite, anhydride, and magnesite. Quartz and hematite were dominant in Lamza coal (LMZ), while Shankodi-Jangwa coal (SKJ) is associated with dolomite and quartz. The bitumen was found to contain quartz, kaolinite, and rutile. The XRF analysis revealed the presence of sixteen elemental oxides: the most abundant being silicon dioxide, ferric oxide, aluminium oxide, sulphur trioxide, calcium oxide, and titanium oxide. Amongst the coal samples, CHK, AFZ and GMG coals have low acidic/basic and basic/acidic ratios, which indicate that cokes originating from them may form the least slag with the best blast furnace efficiency

    Rare earth elements study of cretaceous coals from benue trough basin, Nigeria: modes of occurrence for greater sustainability of mining

    Get PDF
    The rare earth elements (REE) possess a beneficial combination of chemical and physical properties, making them valuable for most advanced branches of engineering and technology. Alternative sources of REE are desirable due to limited reserves of conventional REE containing minerals over the world combined with disproportionate supply over demand in the commodity markets. This study investigated the occurrence of REE and carbon nanotubes (CNTs) in Cretaceous Nigerian coals for prospective industrial applications. Results show that the coals’ crystalline mineral matter comprises quartz, kaolinite, and illite with minor quantities of feldspar, hematite, magnetite, calcite, dolomite, which indicate detrital mineral origins. Elemental relationships (such as Al2O3/TiO2, Cr/Th vs. Sc/Th, and Co/Th vs. La/Sc) suggest sediment-source regions with mafic, intermediate or felsic compositions. REE are either strongly fractionated or characterized by light-enrichment along with outlook coefficient (Coutl) values that suggest the coals are prospective substitute sources for REE and yttrium (REY) recovery. Several minerals including jarosite, goethite, epsomite, ferrohexahydrite, natrojarosite, rozenite, and gypsum were detected in trace amounts. REE mineral phases were not identified but only amorphous phases containing Ce, La, Nd, Th, Pr, Sm, Gd, Tb, Dy, Ho, and Hf. Maceral composition (high vitrinite), presence of iron-containing minerals (hematite and magnetite), high carbon contents, reduced volatile matter and low ash content favoured the formation of naturally occurring multi-walled carbon nanotube (MWCNTs) structures in Maiganga (MGA) coal. Hence, the present study is the first scientific report on the naturally occurring REEs and MWC nanophases in Cretaceous coals from the Benue Trough. © 202

    Physicochemical, mineralogy, and thermo-kinetic characterisation of newly discovered nigerian coals under pyrolysis and combustion conditions

    Get PDF
    In this study, the physicochemical, microstructural, mineralogical, thermal, and kinetic properties of three newly discovered coals from Akunza (AKZ), Ome (OME), and Shiga (SHG) in Nigeria were examined for potential energy recovery. Physicochemical analysis revealed high combustible but low levels of polluting elements. The higher heating values ranged from 18.65 MJ/kg (AKZ) to 26.59 MJ/kg (SHG). Microstructure and mineralogical analyses revealed particles with a rough texture, surface, and glassy lustre, which could be ascribed to metals, quartz, and kaolinite minerals. The major elements (C, O, Si, and Al), along with minor elements (Ca, Cu, Fe, K, Mg, S, and Ti) detected are associated with clays, salts, or the porphyrin constituents of coal. Thermal analysis showed mass loss (ML) ranges from 30.51% to 87.57% and residual mass (RM) from 12.44% to 69.49% under combustion (oxidative) and pyrolysis (non-oxidative) TGA conditions due to thermal degradation of organic matter and macerals (vitrinite, inertinite and liptinite). Kinetic analysis revealed the coals are highly reactive under the oxidative and non-oxidative conditions based on the Coats–Redfern Model. The activation energy (Ea) ranged from 23.81 to 89.56 kJ/mol, whereas the pre-exponential factor (ko) was from 6.77 × 10–4/min to 1.72 × 103/min under pyrolysis and combustion conditions. In conclusion, the coals are practical feedstocks for either energy recovery or industrial applications

    Physicochemical Characterization and Thermal Decomposition of Garin Maiganga Coal

    Get PDF
    The paper examined physicochemical and thermal characteristics of the newly discovered Garin Maiganga (GMG) coal from Nigeria. The physicochemical characterization comprised of elemental, proximate, calorific value, and classification (rank) analyses. Thermal analysis was examined using combined Thermogravimetric (TG) and Derivative Thermogravimetric analyses (DTG). Hence, the coal was heated from 30°C to 1000°C at 20°C/min under inert conditions to examine its thermal degradation behaviour and temperature profile characteristics (TPC). The results indicated that the GMG coal fuel properties consist of low Ash, Nitrogen, and Sulphur content. Moisture content was > 5%, Volatile Matter > 50%, Fixed Carbon > 22%, and Heating Value (HHV) 23.74 MJ/kg. Based on its fuel properties, the GMG coal can be classified as a Sub-Bituminous B, non-agglomerating low rank coal (LRC). The GMG coal TPCs – onset, peak, and offset temperatures – were 382.70°C, 454.60°C, and 527.80°C, respectively. The DTG profile revealed four (4) endothermic peaks corresponding to loss of moisture (drying), volatile matter (devolatization), and coke formation. The residual mass Rm was 50.16%, which indicates that higher temperatures above 1000°C are required for the complete pyrolytic decomposition of the GMG coal. In conclusion, the results indicate that the GMG coal is potentially suitable for future utilization in electric power generation and the manufacture of cement and steel

    Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Get PDF
    The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification), and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ) and Shankodi-Jangwa (SKJ) – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV) for energy conversion. The coal classification revealed that the Afuze (AFZ) coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ) coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C), devolatilization (200-600 °C), and char decomposition (600-1000 °C). The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications

    Ultimate Analysis of some Nigerian coal: Ranking and Suitable Application

    Full text link
    Ultimate analysis was carried out to determine the elemental composition of some Nigerian coal samples viz: Garin Maiganga (GMGA3 ndash top layer and GMGB ndash base layer), Chikila (CHK), Lamza (LMZ) and Afuzie (AFZ) in order to ascertain their ranks for appropriate utilization. Carbon, hydrogen and oxygen were theoretically (numerically) determined and the results fall between 78.26 ndash 83.37 %, 5.73 ndash 6.00 % and 7.98 ndash 12.55 % respectively. Sulphur and nitrogen were determined conventionally by Eschka and Kjeldah method respectively and the sulphur content fall between 0.68 ndash 0.87 %, while that of nitrogen was between 1.98 ndash 2.54 %. Generally, the coal samples had low elemental contents (with the exception of carbon), which implies low mineral compounds which are undesirable because of their adverse effect on operational system, environment, products and ultimate users, and so they are safe for various application taking advantage of their high carbon contents. The investigation of the coal samples revealed that all are of sub-bituminous rank and are of good grade (low sulphur content) that can be utilized for gasification, liquefaction, power generation and coking technology ndash both conventional and formed coke making, for domestic and industrial fuel making.nbs

    Geochemistry, mineralogy and thermal analyses of Cretaceous coals from the Benue Trough basin Nigeria: Reconnaissance assessments

    No full text
    Selected coal samples from the Benue Trough Basin (Nigeria) were analysed by X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), Fourier transform-infrared spectroscopy (FT-IR), and all the techniques used. The main minerals detected are clays (e.g., kaolinite and illite), quartz, feldspar, hematite and magnetite with traces of calcite, siderite, dolomite, orthoclase and graphite. The authigenic and detrital origins of the clay minerals detected were confirmed by FT-IR analysis. The XPS spectra identified elements similar to the mineral phases observed in the XRD spectra. The contents of Al2O3, CaO, Fe2O3, K2O, Na2O and P2O5 were below the values reported for US and Chinese coals. The elemental indexes (e.g. Al2O3/TiO2, Co/Th vs. La/Sc, Cr/Th vs. Sc/Th) showed that the influence of intermediate-mafic materials derived from source-region sediments is negligible. The Ni/Co ratio showed that the coal forming marsh experienced comparatively mild redox conditions. The ratios of V/(V + Ni), Co/Ni, and Mo/Ni revealed marginal or non-existent marine effects. Trace metals ratios such as V/Ni, Sr/Ba, Rb/Sr, Sr/Cu and V/Zn showed evidence of a large degree of freshwater environment mainly in a humid climate. Maceral composition reflects fluctuations of dry and wet conditions in the forest swamp in a humid environment with an entry of marginal marine system and good plant tissue preservation. The rare earth elements (REE) in the coal samples studied are characterized by light-REE enrichment. Thermal decomposition resulted in the range of residual mass (RM = 33.67%–61.28%) and mass losses (ML = 38.72% - 66.33%), which attributed to the drying, devolatilization, and coke formation. Thermal reactivity followed the sample order A-5 > A-1 > A-6, which indicates A-5 is more thermally reactive. The results indicate that the coal samples could be exploited for electric power generation
    corecore