1,405 research outputs found
J1128+592: a highly variable IDV source
Short time-scale radio variations of compact extragalactic radio quasars and
blazars known as IntraDay Variability (IDV) can be explained in at least some
sources as a propagation effect; the variations are interpreted as
scintillation of radio waves in the turbulent interstellar medium of the Milky
Way. One of the most convincing observational arguments in favor of a
propagation-induced variability scenario is the observed annual modulation in
the characteristic time scale of the variation due to the Earth's orbital
motion. So far there are only two sources known with a well-constrained
seasonal cycle. Annual modulation has been proposed for a few other less
well-documented objects. However, for some other IDV sources source-intrinsic
structural variations which cause drastic changes in the variability time scale
were also suggested. J1128+592 is a recently discovered, highly variable IDV
source. Previous, densely time-sampled flux-density measurements with the
Effelsberg 100-m radio telescope (Germany) and the Urumqi 25-m radio telescope
(China), strongly indicate an annual modulation of the time scale. The most
recent 4 observations in 2006/7, however, do not fit well to the annual
modulation model proposed before. In this paper, we investigate a possible
explanation of this discrepancy.Comment: 5 pages, to be appear in the Astronomische Nachrichten as part of the
conference proceeding of the N+N+N 2007 Workshop for Young Researche
Microarcsecond Radio Imaging using Earth Orbit Synthesis
The observed interstellar scintillation pattern of an intra-day variable
radio source is influenced by its source structure. If the velocity of the
interstellar medium responsible for the scattering is comparable to the
earth's, the vector sum of these allows an observer to probe the scintillation
pattern of a source in two dimensions and, in turn, to probe two-dimensional
source structure on scales comparable to the angular scale of the scintillation
pattern, typically as for weak scattering. We review the theory on
the extraction of an ``image'' from the scintillation properties of a source,
and show how earth's orbital motion changes a source's observed scintillation
properties during the course of a year. The imaging process, which we call
Earth Orbit Synthesis, requires measurements of the statistical properties of
the scintillations at epochs spread throughout the course of a year.Comment: ApJ in press. 25 pages, 7 fig
Observations of Intrahour Variable Quasars: Scattering in our Galactic Neighbourhood
Interstellar scintillation (ISS) has been established as the cause of the
random variations seen at centimetre wavelengths in many compact radio sources
on timescales of a day or less. Observations of ISS can be used to probe
structure both in the ionized insterstellar medium of the Galaxy, and in the
extragalactic sources themselves, down to microarcsecond scales. A few quasars
have been found to show large amplitude scintillations on unusually rapid,
intrahour timescales. This has been shown to be due to weak scattering in very
local Galactic ``screens'', within a few tens of parsec of the Sun. The short
variability timescales allow detailed study of the scintillation properties in
relatively short observing periods with compact interferometric arrays. The
three best-studied ``intrahour variable'' quasars, PKS 0405-385, J1819+3845 and
PKS 1257-326, have been instrumental in establishing ISS as the principal cause
of intraday variability at centimetre wavelengths. Here we review the relevant
results from observations of these three sources.Comment: 10 pages, 4 figures, to appear in Astronomical and Astrophysical
Transaction
Intra-Day Variability and the Interstellar Medium Towards 0917+624
The intra-day variable source 0917+624 displays annual changes in its
timescale of variability. This is explained in terms of a scintillation model
in which changes in the variability timescale are due to changes in the
relative velocity of the scintillation pattern as the Earth orbits the sun.
(see also astro-ph/0102050)Comment: 4 pages, 1 figure. Accepted for A&A Letter
Rapid interstellar scintillation of PKS B1257-326: two-station pattern time delays and constraints on scattering and microarcsecond source structure
We report measurements of time delays of up to 8 minutes in the centimeter
wavelength variability patterns of the intra-hour scintillating quasar PKS
1257-326 as observed between the VLA and the ATCA on three separate epochs.
These time delays confirm interstellar scintillation as the mechanism
responsible for the rapid variability, at the same time effectively ruling out
the coexistence of intrinsic intra-hour variability in this source. The time
delays are combined with measurements of the annual variation in variability
timescale exhibited by this source to determine the characteristic length scale
and anisotropy of the quasar's intensity scintillation pattern, as well as
attempting to fit for the bulk velocity of the scattering plasma responsible
for the scintillation. We find evidence for anisotropic scattering and highly
elongated scintillation patterns at both 4.9 and 8.5 GHz, with an axial ratio >
10:1, extended in a northwest direction on the sky. The characteristic scale of
the scintillation pattern along its minor axis is well determined, but the high
anisotropy leads to degenerate solutions for the scintillation velocity. The
decorrelation of the pattern over the baseline gives an estimate of the major
axis length scale of the scintillation pattern. We derive an upper limit on the
distance to the scattering plasma of no more than 10 pc.Comment: 27 pages, 6 figures, accepted for publication in Ap
Interferometric Phase Calibration Sources in the Declination Range 0deg to -30deg
We present a catalog of 321 compact radio sources in the declination range
0deg > delta > -30deg. The positions of these sources have been measured with a
two-dimensional rms accuracy of 35 milliarcseconds using the NRAO Very Large
Array. Each source has a peak flux density >50 mJy at 8.4 GHz. We intend for
this catalog to be used mainly for selection of phase calibration sources for
radio interferometers, although compact radio sources have other scientific
uses.Comment: 9 pages. To appear in ApJS. Catalog (Table 3) is abbreviated in
printed version. Complete catalog available at
ftp://ftp.aoc.nrao.edu/pub/staff/jwrobel/WPW2003_ApJS.tx
Confirmation of two extended objects along the line of sight to PKS1830-211 with ESO-VLT adaptive optics imaging
We report on new high-resolution near-infrared images of the gravitationally
lensed radio source PKS1830-211, a quasar at z=2.507. These adaptive optics
observations, taken with the Very Large Telescope (VLT), are further improved
through image deconvolution. They confirm the presence of a second object along
the line of sight to the quasar, in addition to the previously known spiral
galaxy. This additional object is clearly extended in our images. However, its
faint luminosity does not allow to infer any photometric redshift. If this
galaxy is located in the foreground of PKS1830-211, it complicates the modeling
of this system and decreases the interest in using PKS1830-211 as a means to
determine H0 via the time delay between the two lensed images of the quasar.Comment: Accepted in A&A Letter
- …
