41 research outputs found

    Morphological determinants of carrier frequency signal in katydids (Orthoptera): a comparative analysis using biophysical evidence

    Get PDF
    Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum-like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Sound is generated with the scraper sweeping across the file, producing vibrations that are amplified by the mirror. Using this sound generator, katydids exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has been shown to scale negatively with CF, but such observations derive from studies based on few species, without phylogenetic control, and/or using only the RW mirror length. We carried out a phylogenetic comparative analysis involving 94 species of katydids to study the relationship between LW and RW components of the sound generator and the CF of the male’s mating call, while taking into account body size and phylogenetic relationships. The results showed that CF negatively scaled with all morphological measures, but was most strongly related to components of the sound generation system (file, LW and RW mirrors). Interestingly, the LW mirror (reduced and non-functional) predicted CF more accurately than the RW mirror, and body size is not a reliable CF predictor. Mathematical models were verified on known species for predicting CF in species for which sound is unknown (e.g. fossils or museum specimens)

    The Cercal Organ May Provide Singing Tettigoniids a Backup Sensory System for the Detection of Eavesdropping Bats

    Get PDF
    Conspicuous signals, such as the calling songs of tettigoniids, are intended to attract mates but may also unintentionally attract predators. Among them bats that listen to prey-generated sounds constitute a predation pressure for many acoustically communicating insects as well as frogs. As an adaptation to protect against bat predation many insect species evolved auditory sensitivity to bat-emitted echolocation signals. Recently, the European mouse-eared bat species Myotis myotis and M. blythii oxygnathus were found to eavesdrop on calling songs of the tettigoniid Tettigonia cantans. These gleaning bats emit rather faint echolocation signals when approaching prey and singing insects may have difficulty detecting acoustic predator-related signals. The aim of this study was to determine (1) if loud self-generated sound produced by European tettigoniids impairs the detection of pulsed ultrasound and (2) if wind-sensors on the cercal organ function as a sensory backup system for bat detection in tettigoniids. We addressed these questions by combining a behavioral approach to study the response of two European tettigoniid species to pulsed ultrasound, together with an electrophysiological approach to record the activity of wind-sensitive interneurons during real attacks of the European mouse-eared bat species Myotis myotis. Results showed that singing T. cantans males did not respond to sequences of ultrasound pulses, whereas singing T. viridissima did respond with predominantly brief song pauses when ultrasound pulses fell into silent intervals or were coincident with the production of soft hemi-syllables. This result, however, strongly depended on ambient temperature with a lower probability for song interruption observable at 21°C compared to 28°C. Using extracellular recordings, dorsal giant interneurons of tettigoniids were shown to fire regular bursts in response to attacking bats. Between the first response of wind-sensitive interneurons and contact, a mean time lag of 860 ms was found. This time interval corresponds to a bat-to-prey distance of ca. 72 cm. This result demonstrates the efficiency of the cercal system of tettigoniids in detecting attacking bats and suggests this sensory system to be particularly valuable for singing insects that are targeted by eavesdropping bats

    The Effects of Age, Otological Factors and Occupational Noise Exposure on Hearing Threshold Levels of Various Populations

    No full text
    In this paper an analysis is presented of two investigations conducted in the Netherlands. One study concerns the effect of age on hearing threshold levels of populations not exposed to noise during working hours. The second investigation deals with the effect of occupational noise exposure on hearing threshold levels. There were about 500 test subjects in the first investigation and 2300 industrial workers in the second one. An analysis of the effects of otological factors on hearing threshold levels, based on both investigations, is given as well

    Cardiomyocyte-Specific Transgenic Expression of Prolyl-4-Hydroxylase Domain 3 Impairs the Myocardial Response to Ischemia

    No full text
    Aims: The prolyl-4-hydroxylase domain (PHD) enzymes are representing novel therapeutic targets for ischemic tissue protection. Whereas the consequences of a knock out of the PHDs have been analyzed in the context of cardioprotection, the implications of PHD overexpression is unknown so far. Methods and Results: We generated cardiomyocyte-specific PHD3transgenic mice (cPhd3tg). Resting cPhd3tg mice did not show constitutive accumulation of HIF-1α or HIF-2α or changes in HIF target gene expression in the heart. Cardiac function was followed up for 14 months in these mice and found to be unchanged. After challenging the cPhd3tg mice with ligation of the left anterior descending artery, HIF-1α/-2α accumulation in the left ventricles was blunted. This was associated with a significantly increased infarct size of the cPhd3tg compared to wild type mice. Conclusion: Whereas overexpression of PHD3 in the resting state does not significantly influence cardiac function, it is crucial for the cardiac response to ischemia by affecting HIFα accumulation in the ischemic tissue

    Zum Nachweis latenter vestibulärer Spontansymptome

    No full text

    Diskussion zu den Vorträgen 64–67

    No full text

    Audiometric studies in epileptics

    No full text
    corecore