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Abstract 16	

Male katydids produce mating calls by stridulation using specialized structures on the 17	

forewings. The right wing (RW) bears a scraper connected to a drum-like cell known as the 18	

mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral 19	

side, the stridulatory file. Sound is generated with the scraper sweeping across the file, 20	

producing vibrations that are amplified by the mirror. Using this sound generator, katydids 21	

exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with 22	

species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has 23	

been shown to scale negatively with CF, but such observations derive from studies based on 24	

few species, without phylogenetic control, and/or using only the RW mirror length. We 25	

carried out a phylogenetic comparative analysis involving 94 species of katydids to study the 26	

relationship between LW and RW components of the sound generator and the CF of the 27	

male’s mating call, while taking into account body size and phylogenetic relationships. The 28	

results showed that CF negatively scaled with all morphological measures, but was most 29	

strongly related to components of the sound generation system (file, LW and RW mirrors). 30	

Interestingly, the LW mirror (reduced and non-functional) predicted CF more accurately than 31	

the RW mirror, and body size is not a reliable CF predictor. Mathematical models were 32	

verified on known species for predicting CF in species for which sound is unknown (e.g. 33	

fossils or museum specimens). 34	

Keywords: Stridulation, sound production, insect, bioacoustics, fossil, body size.  35	

  36	
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Introduction 37	

Tettigoniidae, more commonly known as katydids or bush crickets, are insects known 38	

for their acoustic communication. Males produce calling songs to attract a mate using 39	

specialized structures on their forewings (Stumpner et al., 2013). This sound production 40	

system comprises a serrated vein, also known as the stridulatory file, on the ventral part of 41	

the left wing (LW), which is passed across a sharp lobe or scraper on the anal margin of the 42	

right wing (RW) producing vibrations that are amplified by a membrane on the RW known as 43	

the mirror (Bailey, 1970; Morris, 1999; Heller & Hemp, 2014). The mirror is a delicate 44	

membrane stretched between a closed section of raised veins, which helps to radiate and 45	

amplify the sounds produced by the scraper and the file (Fig. 1) (Broughton, 1964; Bailey, 46	

1967; Montealegre-Z & Postles, 2010). Katydid males possess mirror cells on both wings 47	

however, while the mirror on the RW is functional in most species, the LW mirror (the wing 48	

where the active file resides) is usually atrophied and damped to vibrations (Montealegre-Z & 49	

Postles, 2010; Montealegre-Z, 2012; Sarria-S et al., 2016; Chivers et al., 2017). Although, in 50	

some species, small wing cells associated with the mirror do exhibit vibrational properties 51	

during sound production (Sarria-S et al., 2016). 52	

Using this sound generating mechanism, the range of song carrier frequencies 53	

produced by tettigonid species ranges from as low as 600 Hz (in Tympanophyllum 54	

arcufolium) to as high as 150 kHz (Supersonus aequoreus) (Heller, 1988; Morris et al., 1994; 55	

Heller, 1995; Montealegre-Z et al., 2006; Sarria-S et al., 2014). Across insects, no other 56	

group produces such a wide range of acoustic communication signals using a single 57	

mechanism. 58	

The structures specialized for sound production in animals usually scale with body 59	

size and with sound carrier frequency (CF) (Irschick et al., 2014). CF is defined as the centre 60	
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frequency at which spectral energy reaches its maximum. This relationship can also be 61	

observed in the sound generator apparatus of katydids where it was shown that any linear 62	

dimension of the structures involved in sound production (e.g., the RW mirror, and the 63	

stridulatory file) scales with the CF of the male’s call (Morris & Pipher, 1967; Bailey, 1970; 64	

Sales & Pye, 1974; Heller, 1995; Montealegre-Z, 2009). Although the LW mirror is usually 65	

reduced and non-functional, in some species certain small wing cells associated to this mirror 66	

vibrate in some species (Sarria-S et al., 2016). 67	

Researchers have studied various forms of morphological scaling of the stridulatory 68	

apparatus to identify the factors that affect the CF in singing katydids. Using two species of 69	

katydid, Morris & Pipher (1967), based on Broughton’s (1964) analysis suggested that the 70	

RW mirror frame in the katydid tegmina could be modeled as vibrating cantilever to predict 71	

CF. Bailey (1970) included the mirror measurements of two more species of Conocephalinae, 72	

which he fitted in Morris & Pipher (1967) linear model, and concluded that the mirror frame 73	

dimensions of the species he studied (Ruspolia nitidula) fitted this plot despite the fact that it 74	

differed substantially from the Conocephalus species used by Morris & Pipher. Sales & Pye 75	

(1974) in a larger review reinforced these two previous studies adding data for 15 more 76	

species. Bailey’s (1970) and Sales & Pye’s (1974) analyses showed that most of the points 77	

(originated from mirror frame length) fell close to Morris & Pipher’s (1967) fitted line. Any 78	

change in CF is explained by a significant amount of mirror dimension (R2=0.99, P<0.01, 79	

Lnfo = 0.49 Lnl-2, regression obtained from extrapolated data points in Sales & Pye plotted 80	

chart). Sales & Pye (1974) concluded that Morris & Pipher’s assumption on similar physical 81	

properties of the mirror, was likely to be true. In a different approach, Rust et al. (1999) 82	

studied 11 species of katydid to investigate the relationship of the entire stridulatory field of 83	

the LW, including mirror and surrounding areas, and the CF of the song to predict the 84	

frequency that an extinct katydid would sing at. They found a negative correlation between 85	
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the stridulatory area and CF. None of the above analyses, however, took into account 86	

phylogenetic correction of the data, because such methods were not available at the time. 87	

Montealegre-Z (2009) produced a first comparative analysis across 58 species of katydids, 88	

reporting allometric correlations between several calling song acoustic parameters and 89	

morphological structures, including body size based on the method of Independent Contrast 90	

(Garland et al., 1992). However, more rigorous phylogenetic comparative methods have not 91	

been applied, and a larger dataset is now available. 92	

From the various morphological variables used by Montealegre-Z (2009), mirror 93	

scaling was based on the length of the frame, as in the cantilever model (Morris & Pipher, 94	

1967; Bailey, 1970; Sales & Pye, 1974). However, it was recently demonstrated in some 95	

species that not only the RW mirror is involved in sound radiation, but two large cells 96	

adjacent to the mirror (called the harp and the neck, Fig. 1), play a role as well (Montealegre-97	

Z & Postles, 2010; Sarria-S et al., 2016; Chivers et al., 2017). While the right mirror features 98	

prominently in sound radiation, the neck and harp show a considerable influence, especially 99	

when the handle (the vein connecting the mirror and harp) is thin, and must be taken into 100	

account as active wing areas devoted to sound production (see Fig. 1). In fact, early work by 101	

Bailey (1970) shows sound radiation maps of the wings of Ruspolia nitidula, which suggest 102	

that the wing cells surrounding the mirror are acoustically active. 103	

For different reasons researchers have been interested in the relation of body size and 104	

CF. For example, in sexual selection studies of acoustic species, female can assess male 105	

size/quality based on their carrier frequencies (Wedell & Sandberg, 1995). Many researchers 106	

have reported that the frequency produced by katydids is inversely related to their body size 107	

(Wedell & Sandberg, 1995; Morris, 2008; Anichini et al., 2017) meaning as a katydid’s size 108	

increases the CF of its song will decrease. And recent work on katydids suggest that wing 109	
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area seems to be under positive sexual selection, as the relationship of wing size on male 110	

body size proves to be positive (Anichini et al., 2017). 111	

The aim of this research is to produce a comparative analysis between the morphology 112	

of both the LW and RW mirrors (and, if applicable, the associated cells), the file, and the 113	

male CF using a large data set of 94 tettigonid species, while taking in to account body size 114	

and phylogeny. We predict that both the left and right mirror area are predictors of the CF 115	

and that a negative correlation exists between the area of the mirror and the frequency 116	

produced, meaning that smaller mirror areas will be associated with higher CF and larger 117	

mirrors to lower CF. Additionally, based on phylogenetically-corrected comparative methods, 118	

this research aims to identify morphological parameters that can be used in the construction 119	

of mathematical models to accurately predict CF. These models will enable researchers to 120	

infer the calling song frequencies from species where the actual recording of living animals is 121	

not possible, like in museum specimens or in extinct species only known from the fossil 122	

record. A multi-parameter model to predict CF will prove to be particularly relevant to 123	

palaeontology as fossil Orthoptera are rarely preserved in their complete form, often 124	

consisting of only one wing or isolated body parts.  125	

 126	

Materials and Methods 127	

Morphological data 128	

We examined the sound generator structures in males of 94 different species of the 129	

family Tettigoniidae. Specimens belong to a research collection at the University of Lincoln, 130	

UK and samples were a mixture of alcohol-preserved, dry, and pinned specimens. Dry 131	

samples were re-hydrated in an insect-relaxing chamber (a hermetic plastic box filled with 132	

wet sand) for 24 hours. The purpose of this step was to soften the specimens, allowing for 133	
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easier manipulation of the sample without risk of shattering. This allowed for the extension of 134	

the wings (Gibb, 2014), making the forewing structures of both wings visible to be 135	

photographed. Wings of some animals were difficult to extend or to position and were 136	

removed using micro-scissors in order to get a clear picture of the mirror and therefore a 137	

more accurate area measurement. Using a VMS-004-LCD digital USB microscope camera 138	

(Veho Europe, Hampshire, UK), both the right and left forewings were photographed next to 139	

a scale (planar to the wing surface) with 0.5 mm increments using the image capture program 140	

Veho professional imaging (Veho Europe, Hampshire, UK). The surface area of the left and 141	

right mirrors was extracted using ImageJ v1.50g (Rasband, W.S., U. S. National Institutes of 142	

Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/). The wing vibrating areas 143	

measured were the cell contained in the mirror ring (for species with reduced neck and harps, 144	

e.g. most Pseudophyllinae, and Arachnoscelidina), and the area occupied by mirror-neck-145	

harp (e.g., most conocephaloids), as we have evidence that these areas are also active in 146	

sound radiation in some species (see Fig. 1). The stridulatory file was measured as the length 147	

between the first tooth in the anal end to the last tooth of in the basal end from SEM pictures 148	

taken by the authors, except for those species indicated in Table S-1, which were obtained 149	

from published literature or from specimens borrowed from collections. 150	

Measurements of pronotum and mid femora length were taken as indicator of body 151	

size and to control for body size effects (Gwynne & Bailey, 1988; Del Castillo & Gwynne, 152	

2007; Montealegre-Z, 2009) using digital calipers (Poly-Cal Electronic Caliper W74-101-175, 153	

Fowler High Precision, Newton, MA, USA). The mid femur was used here as this appendage 154	

is not specialized for either sound production or sound reception, and will therefore not 155	

constitute a potentially biased structure that naturally scales with acoustic parameters. For 156	

Chondroderella borneensis and Promeca spp.), measurements were taken directly from 157	

photographs provided by Dr. Klaus-G. Heller. 158	
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 159	

Acoustic data 160	

The CF data was obtained from a variety of sources, including published and 161	

unpublished data (see Table S1). CF is defined as the peak of dominant energy observed in a 162	

spectrum. Previously unpublished data was collected and provided by members of the 163	

bioacoustics lab at the University of Lincoln. All recordings were attained in lab conditions 164	

and involved ultrasound-sensitive equipment, and were digitized using sampling rates of 165	

either 256, 512 or 1024·kilosamples·s–1. Insects were placed in a mesh cage, hung from the 166	

ceiling of a soundproof room, >1 m below the ceiling and >1 m above the floor, hence 167	

mitigating against potential reflections. Sound recordings were obtained using a 1/8” Brüel & 168	

Kjær Type 4138 condenser microphone, connected to a Brüel & Kjær 2633 preamplifier 169	

(Brüel & Kjær, Nærum, Denmark). Data were stored on a notebook computer using an NI 170	

USB-6259 board (National Instruments, Austin, TX, USA) and LabVIEW version 9 (32 bit) 171	

2009 software interface (National Instruments, Austin, TX, USA).  172	

Statistical analysis 173	

To account for non-independence of residuals in models that include evolutionarily 174	

related species (Felsenstein, 1985), we carried out a phylogenetic generalized least squares 175	

approach (PGLS) between the log frequency and log morphology measurements (Pagel, 176	

1999; Freckleton et al., 2002). The pglmEstLambda function was used to identify the 177	

maximum likelihood value of lambda, λ (Pagel, 1999; Orme et al., 2009; Revell, 2010), 178	

which measures the degree to which the covariance matrix (built as part of CAIC) follows a 179	

Brownian model. λ can vary between 0 (no phylogenetic autocorrelation) and 1 (complete 180	

phylogenetic autocorrelation). The phylogeny of the 94 species used was adapted from the 181	

most recent katydid phylogeny (Mugleston et al., 2013), which was built using molecular 182	
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sequence data for 6 genes from 135 taxa representing 16 of the 19 Tettigoniidae subfamilies 183	

(see appendices 1 and 2). 184	

All variables were log-transformed (using natural logarithm). We tested how CF 185	

scaled with single morphological components (pronotum length, file length, right mirror area, 186	

left mirror area and femur length). We present results from the PGLS along with results from 187	

OLS (ordinary least squares) for comparison (Freckleton, 2009). Following this, we tested all 188	

pair combinations of morphological variables. We assessed the best model based on AICc 189	

values. Models with ΔAICc<5 were considered broadly equivalent. For all models, residuals 190	

were examined for heteroscedasticity and outliers. Analysis was carried out using R code 191	

kindly provided by R.P. Freckleton (University of Sheffield, UK). All models were carried 192	

out in R version 3.2.1 (R Core Team, see the R homepage), see references. 193	

Testing the models on control Species 194	

The accuracy of the predictive models was tested using morphological measurements 195	

of species not used to construct the phylogenetic regression, but for which reliable call 196	

recordings exist in our collection or in the literature. In this case, the morphological structure 197	

was entered into the PGLS regression equations and the difference between actual and 198	

expected CF was calculated. All values were transformed to be positive, irrespective of 199	

whether higher or lower values were calculated. Recent evidence (Chivers et al., 2017), 200	

suggests a functional role for the harp area alongside the mirror region of the wing. Therefore, 201	

we additionally calculated the difference between actual and predicted CF of the right and 202	

left mirror, with and without the harp region included. Lastly, we tested whether difference 203	

(irrespective of direction) was correlated with actual CF using Pearson’s correlations. 204	

Significant values would suggest systematic biases in CF prediction. The species used to test 205	

the models are listed in Table S-2. 206	
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Results 207	

We measured morphological structures (mirror area, file length) of the sound 208	

generator in the left and right forewings coupled with pronotum and mid-femur lengths in 94 209	

species of katydids to investigate allometric relations with calling song frequency. Log CF 210	

scaled allometrically with all morphological measures (Table 1), but was most strongly 211	

related to components of the sound generation system (file length, LW and RW mirrors; Fig. 212	

2). Of these, LW and RW mirrors explained the greatest single amount of variation in the 213	

data (Table 1; Figure 2CD). 214	

Diagnostic plots show that one species (Tympanophyllum arcufolium) was a 215	

significant outlier in the analysis of log frequency and pronotum length. Exclusion of this 216	

point changed the regression equations R2 (Table 2), suggesting that pronotum length may be 217	

the least reliable of parameters (Fig. 2A). Based on AIC values, three models had reasonable 218	

support (Δ AICc<5; Table 2). Of these, the best model was the combination of file length and 219	

left mirror (Table 2). Interestingly, this model was not phylogenetically dependent (λ=0: 220	

Table 2), whereas there was stronger phylogenetic dependence on the model containing the 221	

right mirror. 222	

 223	

Testing the models on control species 224	

In order to establish which structure of the sound generator in the wings of katydids 225	

predicts the CF with lower error, we calculated CF in species that were not used in the PGLS 226	

analysis, for which CF values and wing anatomy were available (see Table 3). This analysis 227	

suggests that the best predictors of CF were the file length (mean difference between actual 228	

and predicted CF=1.83 kHz) and the left mirror area (mean difference between actual and 229	

predicted CF=1.25 kHz; Figure 4). Interesting, the RW mirror area performed poorly as a 230	
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predictor of CF, though this improved when harp and neck cells areas were included (Fig 3C). 231	

More specifically, it halved the mean estimated difference in real and predicted CF. Inclusion 232	

of the LW harp area did not appreciably improve the prediction of CF (Figure 4).  233	

 The difference between actual and predicted CF was positively correlated for the RW 234	

mirror (rp=0.52, p=0.041) and the LW mirror + harp area (rp=0.63, p<0.001), suggesting that 235	

they become less reliable at high frequencies. In contrast, no other feature showed any 236	

relationship (right mirror +harp: rp=0.23, p=0.384; file length: rp=0.16, p=0.549; left mirror: 237	

rp=-0.34, p=0.197) 238	

Discussion 239	

This research shows a high level of predictability of CF from the structure of the 240	

stridulatory apparatus, even after correction for phylogenetic-dependence. Although all the 241	

studied morphological structures of the stridulatory apparatus in both LW and RW could be 242	

used to predict CF, those of the LW (mirror and stridulatory file) predict CF with a higher 243	

level of accuracy than vibratory areas of the RW (Fig. 4, Table 3). This finding was 244	

unanticipated because the right mirror has been traditionally known to be the main source of 245	

sound radiation across species and the focus of attention of researchers working in katydid 246	

stridulation (Broughton, 1964; Bailey, 1967; Morris & Pipher, 1967; Sales & Pye, 1974; 247	

Morris et al., 1975), whilst the left mirror is usually damped or atrophied (Montealegre-Z, 248	

2005; Montealegre-Z & Mason, 2005; Montealegre-Z & Postles, 2010; Montealegre-Z, 2012; 249	

Sarria-S et al., 2014; Sarria-S et al., 2016). This morphological asymmetry in the stridulatory 250	

fields of the LW and RW is one of the synapomorphic features of the family Tettigoniidae 251	

(Rust et al, 1999; Montealegre-Z, 2005). Hemp et al. (2015) studied the scaling of length and 252	

width of left (N=7 species) and right (N=4 species) mirrors as predictors of CF in 253	

Afroanthracites and Afroagraecia species. They found a high correlation for the length of left 254	
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and right mirror but lower for the width. In particular, the left mirror width had a lower 255	

correlation due to only one species with real asymmetrical tegmina Afroagraecia brachyptera. 256	

In our study, we use mirror area to predict CF. In the case of species with reduced or 257	

atrophied left mirrors, simple linear dimensions may not therefore capture accurately the 258	

mirror shape or size.  For example, in Afroagraecia brachyptera the left mirror is more 259	

triangular in shape making width dimensions harder to measure compared to other species 260	

(see Fig. 11: Hemp et al. 2015). Hence, we believe mirror area is a better measure to account 261	

for shape variance in mirrors.  262	

The fact that the left mirror predicts CF more accurately than the right mirror could be 263	

explained by the fact that although the right stridulatory field is heavily involved in sound 264	

production, it exhibits more variation across species than the left stridulatory field. For 265	

example, in several species not only does the right mirror radiate sound but also the adjacent 266	

cells (the neck and the harp, Fig. 1AB) exhibit high levels of deformation during resonant 267	

vibration (Montealegre-Z & Postles, 2010; Chivers et al., 2017; Jonsson et al., 2017). In other 268	

species (e.g., many Pseudophyllinae, Fig. 1C) the right stridulatory area is limited to the 269	

mirror itself, while the neck and harps are atrophied or reduced to be acoustically inactive 270	

(Montealegre-Z, 2005; Montealegre-Z, 2012) (see Fig 1C). Such reduction of the sound 271	

radiating area to a single mirror ring seems to be associated with levels of sound purity or 272	

tonality (narrow-band spectra). Species with pure tone calls usually have a single isolated 273	

right mirror (Morris & Beier, 1982; Morris et al., 1989; Montealegre-Z & Morris, 1999), 274	

while those with more active sound radiating cells tend to emit more broadband frequency 275	

calls (Montealegre-Z, 2005; Montealegre-Z & Mason, 2005; Gu et al., 2012; Chivers et al., 276	

2017). The large amount of variation in spectral quality observed in Tettigoniidae, a family in 277	

which many species are usually regarded as broadband sound emitters, may partly be 278	

explained by multiple active sound radiating cells. Inclusion of the neck and harp areas plus 279	
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right mirror was found to provide a better prediction of CF than right mirror on its own, 280	

perhaps emphasizing the importance of these relatively unexplored areas on CF production.  281	

The left mirror on the other hand has maintained a more conservative structure than 282	

the right mirror. While the left mirror is atrophied in most species studied so far 283	

(Montealegre-Z & Postles, 2010; Montealegre-Z, 2012; Sarria-S et al., 2014; Sarria-S et al., 284	

2016; Chivers et al., 2017; unpublished data), the right mirror underwent selection pressures 285	

for frequency diversity based on diversified resonances. Although some left mirrors do 286	

contain extra vibrating areas, these remain small and inclusion of these has a minor impact on 287	

CF. In the absence of a laser Doppler vibrometer, acoustically functional cells in the left 288	

mirror could be identified usually by their level of transparency and by a conspicuous 289	

reduction in cross veins. In general, it is relatively uncommon to observe functional left 290	

mirrors, and even rarer to find an active left mirror, harp and neck across living katydid 291	

species. Nevertheless, in most Conocephalus spp. Orchellimum spp. Afroanthracites spp, 292	

Phlugis spp., Neduba spp. Acanthacara spp., Decticus spp., Platycleis spp. or Tettigonia spp., 293	

and in many species of Saginae, for example, the left mirror exhibits some level of 294	

specialization for sound radiation. Not surprisingly, males of these species tend to produce 295	

broadband calling songs (Morris & Pipher, 1967; Morris & Pipher, 1972; Pipher & Morris, 296	

1974; Morris et al., 1975; Heller, 1988; Jatho et al., 1992; Jatho et al., 1994; Morris & Mason, 297	

1995; Hemp et al., 2015; Lemonnier-Darcemont et al., 2016). Even when the left stridulatory 298	

cell shows some levels of activity, high levels of mechanical asymmetry between both left 299	

and right wings are observed, with maximum amplitude exhibited by the right stridulatory 300	

area (Montealegre-Z & Mason, 2005; Montealegre-Z & Postles, 2010; Sarria-S et al., 2016; 301	

Chivers et al., 2017; Jonsson et al., 2017). This wing asymmetry seems to have been selected 302	

as a way to reduce acoustic interference between two wings and favoured the use of 303	

ultrasonic frequencies (Montealegre-Z, 2005; Gu et al., 2012). We believe that the LW mirror 304	



Morphological	determinants	of	carrier	frequency	signal	in	katydids	

Page	14	of	29	
	

14	

has been under relatively lower selection pressures than the RW mirror, which means that 305	

although atrophied in many species, the left mirror has maintained a stronger allometric 306	

relationship to the sound production unit as a whole and as a consequence is a better predictor 307	

than the more variable right mirror. 308	

The specific radiation resistance, and therefore its efficiency as a sound source, 309	

depends on the ratio between its diameter and the sound wavelength. The minimum source 310	

size for good source to-medium matching has a radius of about 1/4 of the fundamental 311	

wavelength if it is a dipole source, below this size the specific radiation resistance decreases 312	

more or less rapidly (Bennet-Clark, 1998). In almost all species of Tettigoniidae studied here, 313	

the dimensions of the sound radiator are smaller than the optimal size for sound radiation 314	

related to wavelength (see also Montealegre-Z, 2005); only in the species with the most 315	

ultrasonic calls is the area of radiating surface optimal. Bennet-Clark (1998) discussed these 316	

aspects and pointed out that it is difficult to study the problem of specific acoustic resistance 317	

in tettigoniids because these animals could have evolved secondary resonators in their 318	

forewings, pronotum and subalar spaces. 319	

Applications of the mathematical models 320	

The rationalization for this study was to produce predictive models that could 321	

eventually help to calculate the CF in extinct katydids or museum specimens that we can no 322	

longer determine the CF from (by either analysis of song recordings or from wing vibration 323	

measurements). Fossils may only be partial (rely on single body part, usually the wings) and 324	

the multiple models presented in this research allow a range of frequencies to be calculated, 325	

with varying levels of accuracy.  326	

Our results suggest that the CF from fossilized males could be recovered with high 327	

degree of reliability using left mirror area and file length. However, our model of CF on file 328	
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length is reliable only in those species using CFs below 40 kHz (frequencies >40 kHz were 329	

not included in the test, see Table S2), which is ideal for fossils because it has been shown 330	

that Jurassic and Cretaceous species exploited low-frequency signals (Rust et al., 1999; Gu et 331	

al., 2012). The length of the stridulatory file and the number of teeth a file holds scale 332	

allometrically with body size, with larger files tending to possess more teeth (Montealegre-Z, 333	

2005; Montealegre-Z, 2009; Anichini et al., 2017). Therefore it is not surprising that file 334	

length and other file attributes correlate with CF. For example, pure-tone species use a 1:1 335	

relation between tooth strikes and the number of oscillations produced, i.e., more densely 336	

packed teeth in theory will produce more oscillations per unit time, thus higher frequencies. 337	

However above 40 kHz this 1:1 relationship between oscillations and teeth is not valid any 338	

more. At such elevated CFs species use discrete tooth-strikes delivered at elevated rates and 339	

speeds by scraper elasticity. The stridulatory file should have a minimum size to host the 340	

necessary number of teeth for paused discrete tooth strikes and produce a pulse train of 341	

decent duration (extreme high frequencies). Therefore, for extreme ultrasonic species it is 342	

more important to evolve files of effective lengths to host teeth with particular distribution to 343	

facilitate scraper deformation and elevated rates of tooth strikes. For instance, if the file of the 344	

highest frequency species (Supersonus aequoreous, singing at 150 kHz) is used to predict CF, 345	

the value obtained will be ca 60 kHz. For the reason, the mirrors are better predictors of CF 346	

in this case. 347	

Recent robust molecular phylogeny suggests the Tettigoniidae could have emerged in 348	

late Jurassic (Song et al., 2015). However, modern forms of Tettigoniidae with differentiated 349	

mirrors and asymmetric stridulatory fields as one of the major features distinguishing them 350	

from other Ensifera, appear in the fossil record some 60 mya (Heads & Leuzinger, 2011; Rust 351	

et al., 1999; Greenwalt & Rust, 2014). This wing anatomy facilitates inferring CF from 352	

equations presented in Table 1. In fact, using the morphological features of the extinct 353	
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Pseudotettigonia amoena described in Rust et al. (1999), (only LW anatomy are reported), 354	

we predict CFs of a) 10.5kHz (using file length), b) 12.6kHz (using LW mirror area only), 355	

and c) 9.12 kHz (using LW mirror plus harp area) (Table 3). In this situation the CF values 356	

obtained in a and c are very close; these results suggest that this species used a CF of about 357	

10 kHz. But why did we use the mirror/harp and not the sole mirror as in the calculation?  358	

Rust et al. (1999) reported that the wings of P. amoena seemed to have been more 359	

symmetrical than those of modern forms, it is thus likely that the stridulatory field (mirror 360	

and harp) of the LW was very active in sound production. This is supported by the wing 361	

anatomy, which shows large mirror and harps, both connected by a thin handle vein, 362	

characteristic of large functional stridulatory areas (as shown in Fig. 1B). Consequently, 363	

using the entire area of mirror and harp is recommended here; in addition,  the predicted CF 364	

is in agreement with that obtain using the file. The envisaged CF (ca 10 kHz) is indeed about 365	

3 kHz higher than the 7 kHz originally anticipated by Rust et al. (1999). Similar results were 366	

obtained for P. leona, 11.0 kHz (using file length), 16.2 kHz (using LW mirror area only) and 367	

11.1 kHz (using LW mirror plus harp area) (Table 3). CF inferred from file, and that inferred 368	

from and mirror plus harp match at ~11 kHz. The predicted CF of 11 kHz is about 3.5 kHz 369	

higher than originally calculated (6.5 kHz) by Greenwalt & Rust (2014). We also recalculated 370	

CF in Archaboilus musicus, another extinct species from the middle Jurassic for which the 371	

calling song was reconstructed a few years ago based on comparative methods and 372	

phylogenetic control of 59 species, and mechanical principles of stridulation (Gu et al., 2012). 373	

The original reconstruction by Gu et al. (2012) anticipated a CF of 6.4 kHz (Table 3), with 374	

our new mathematical models, based on file dimension the CF dropped by 1.4 kHz to ca. 5.0 375	

kHz, a CF used by most field crickets today (Michelsen, 1998; Bennet-Clark, 2003).  376	

In extinct hagloids (including Haglidae and Prophalangopsidae) the mirrors on left 377	

and right tegmina are not as well defined as in modern tettigonids and vibratory patterns of 378	
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the wings are variable (Chivers et al., 2017). Hence, using mirror dimension to estimate CF 379	

proves challenging. In circumstances like this, a combination of inferred CFs based on file 380	

length and vibrating areas (inferred from LDV recordings or by identifying cells without 381	

cross veins as potential vibrating areas) could be useful. An example is shown using the relic 382	

species Cyphoderris monstrosa (a Prophalangopsidae). Using the entire vibrating areas 383	

(mirror plus harp and neck), and the stridulatory file, the anticipated CF closely matches the 384	

call CF. The left mirror predicts a relatively accurate CF value of 13.6 kHz against 13.1 kHz, 385	

Table 3). The wings of Cyphoderris are highly symmetrical, as in their extinct ancestors, and 386	

in theory left and right wing anatomy should predict CF similarly. However, we noted that 387	

using only the equation of CF on left mirror to extrapolate values of either left of right 388	

mirrors, will produce better results. For more recent forms of katydids (e.g., Cenozoic) we 389	

recommend using the mathematical models for left and right mirrors and file, when 390	

applicable.  391	

In summary, here we present different solutions to infer the carrier frequencies used 392	

by extinct fossilized ensiferan specimens. Orthopteran fossils are not always available with 393	

the entire body preserved, but certainly the wings are one of the body structures that 394	

preserves with good detail; and fossilized wings are not always found in pairs or complete. 395	

We provide mathematical models (Table 1) that could be used for specific situations to 396	

satisfy the needs imposed by available incomplete specimens. 397	
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	550	

	551	

Figure captions 552	

Fig. 1. Wing vibration maps of different species showing the major deflection areas of both 553	

wings (RW=right wing, LW= left wing) at the carrier frequency of the calling song. (a) 554	

Cyphoderris monstrosa (Prophalangopsidae). (b) Copiphora vigorosa (Conocephalinae). (c) 555	

Nastonotus foreli (Pseudophyllinae). Left column (dorsal view) shows the deflection maps of 556	

the wings highlighting the vibrational contribution of the wing cells named as ‘neck’ and 557	

‘harp’ (a and b). Note that in c the mirror frame completely isolates the vibrations and 558	

deflections of the mirror membrane from the rest of the wing. The right column (dorso-559	

anterior view) shows the 3D vibration of the wings to illustrate the connection between mirror 560	

and harp). In some species the elasticity of a thin vein known as the handle (a and b) extend 561	

vibration beyond the mirror frame. Such elasticity and thin connection between mirror and 562	

harp does not occur in c. The mirror frame is shown with a red dashed outline. a modified 563	

from Chivers et al. (2017); b modified from Sarria et al. (2016), c unpublished data). 564	
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Fig. 2. Morphological predictors of carrier frequency. (a) Pronotum length as indicative of 565	

body size. (b) Stridulatory file length as predictor of CF. The functional file was used in 566	

katydids. However, for species with symmetric wings and two active stridulatory files (e.g. 567	

Cyphoderris monstrosa) any of the two files could be used. (c-d) Right mirror and left mirror 568	

areas as predictor of CF, respectively. All plots show both the regression lines of the Ordinary 569	

Least Squares (OLS) and Phylogenetic Generalized Least Squares (PGLS). 570	

Fig. 3. Validation of the PGLS models using extant species not included in the analysis for 571	

which calling song CF and wing anatomy were available. (a) Song CF on CF predicted from 572	

file dimension. (b) Song CF on left stridulatory field area, using mirror area only (red trace) 573	

and the areas occupied by the mirror and adjacent harp (black outline, as shown in figure 1AB. 574	

(c) Song CF on right stridulatory field only (blue outline) and the area occupied by mirror and 575	

harp. 576	

Fig. 4. Corroboration of the models. The plot shows the difference between predicted 577	

frequency and real CF using species not included in the comparative analysis. No difference 578	

(zero) indicated the predicted and real values are the same and the model is highly accurate. 579	

Fl= File length, Rm= Right mirror, RmH= Right mirror plus harp, Lm= Left mirror, LmH= 580	

Left mirror plus harp. The plot shows that the best predictors are Fl and Lm. 581	
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Table 1: PGLS model outputs comparing log frequency in relation to different morphological features. Models show phylogenetically-correct 414	
estimates and OLS estimates, Pagel’s λ and R2 for the models. * includes removal of single outlier 415	

  416	

    Phylogenetically-controlled Non-phylogenetically controlled 

Model Parameter λ R2 Β±SE t p Β±SE t p 

Midfemur length Intercept 1.00 0.18 4.74±0.50 9.49 <0.001 4.33±0.46 9.49 <0.001 

 Log midfemur 
length 

  -0.95±0.20 -4.68 <0.001 -0.58±0.21 -2.76 <0.001 

Pronotum length Intercept 1.00 0.31 5.00±0.44 11.38 <0.001 5.17±0.34 15.08 <0.001 

 Log pronotum   1.32±0.20 -6.55 <0.001 -1.13±0.18 -6.21 <0.001 

Left mirror area Intercept 0.70 0.61 3.53±0.18 20.04 <0.001 3.86±0.05 69.74 <0.001 

 Log left mirror   -0.54±0.06 -12.03 <0.001 -0.54±0.03 -15.67 <0.001 

Right mirror area Intercept 0.92 0.62 3.91±0.22 17.41 <0.001 3.72±0.06 60.36 <0.001 

 Log right mirror   -0.62±0.05 -12.38 <0.001 -0.59±0.04 -15.27 <0.001 

File length Intercept 0.86 0.52 3.74±0.23 16.05 <0.001 3.83±0.07 51.75 <0.001 

 Log file length   -0.97±0.10 -10.05 <0.001 -1.04±0.08 -13.49 <0.001 

Pronotum length* Intercept 0.98 0.42 5.00±0.33 15.10 <0.001 5.23±0.29 18.14 <0.001 

 Log pronotum   -1.28±0.15 -8.26 <0.001 -1.15±0.15 -7.48 <0.001 
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 417	

Table 2: PGLS model outputs comparing log frequency in relation to pairs of morphological characters, of the three best models. Models show 418	
phylogenetically-correct estimates and OLS estimates, Pagel’s λ and R2 for the models.  419	

  420	
    Phylogenetically-controlled Non-phylogenetically controlled 

Parameter λ R2 AICc Β±SE t p Β±SE t p 

Intercept 0 0.76 107.76 3.61±0.06 59.38 <0.001 3.60±-0.07 49.98 <0.001 

Left mirror    -0.36±0.05 -7.18 <0.001 -0.36±0.06 -6.29 <0.001 

File length    -0.46±0.09 -5.14 0.002 0.44±0.11 -3.87 0.002 

Intercept 0.91 0.66 109.15 4.54±0.29 15.52 <0.001 4.25±0.22 18.92 <0.001 

Right mirror    -0.53±0.05 -3.19 <0.001 0.53±0.04 -12.26 <0.001 

Pronotum length    0.53±0.16 -9.77 0.017 -0.32±0.13 -2.44 0.017 

Intercept 0.77 0.66 112.26 3.92±0.18 21.78 <0.001 3.81±0.07 58.52 <0.001 

Right mirror    -0.46±0.08 -6.08 <0.001 -0.39±0.07 -5.33 <0.001 

File length    -0.36±0.13 -2.75 0.002 -0.42±0.13 -3.12 0.002 
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Table 3. Testing the mathematical models proposed in this research on fossils. We venture CF inference from published fossil material, where 
authors tried to infer CF from using various allometry methods. †= extinct species. ‡= two values from LW and RW files, respectively. (*) CF 
inferred without phylogenetic control. (**) CF calculated controlling for phylogeny. (?) Unknown data. Tett.=Tettigoniidae. Proph. 
=Prophalangopsidae. RM= Right mirror, LM= Left mirror 

Species Family 
CF of 
male'
s call 
(kHz) 

File 
length 
(mm) 

RM 
area 

(mm2) 

RM & 
harp 
area 

(mm2) 

LM 
area 

(mm2) 

LM & 
harp 
area 

(mm2) 

CF 
(kHz) 

from file 

CF 
(kHz) 
from 
RM 

CF 
(kHz) 
from 

RM & 
harp 

CF 
(kHz) 
from 
LM  

CF 
(kHz) 
from 

LM & 
harp 

Source 

Cyphoderris monstrosa Proph. 13.1 3.14/3.3 
‡ 9.76 9.76 9.77 9.77 13.9/13.2

‡ 24 16 19.3 13.6 (Chivers et al., 
2017) 

Pseudotettigonia amoena † Tett. 7.0* 4.2 ? ? 6.35 11.5 10.5 N/A N/A 12.6 9.12 (Rust et al., 
1999) 

Pseudotettigonia leona † Tett. 6.5* 4.2 ? ? 3.96 8.13 11 N/A N/A 16.22 11.1 (Greenwalt & 
Rust, 2014) 

Archaboilus musicus † Proph. 6.4** 9.34 ? ? ? ? 4.99 N/A N/A N/A N/A (Gu et al., 2012) 


