85 research outputs found

    Evidence of Titan's Climate History from Evaporite Distribution

    Full text link
    Water-ice-poor, 5-Ό\mum-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-Ό\mum-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-Ό\mum-bright material covers 1\% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-Ό\mum-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-Ό\mum-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite

    Ruprecht 147: The oldest nearby open cluster as a new benchmark for stellar astrophysics

    Get PDF
    Ruprecht 147 is a hitherto unappreciated open cluster that holds great promise as a standard in fundamental stellar astrophysics. We have conducted a radial velocity survey of astrometric candidates with Lick, Palomar, and MMT observatories and have identified over 100 members, including 5 blue stragglers, 11 red giants, and 5 double-lined spectroscopic binaries (SB2s). We estimate the cluster metallicity from spectroscopic analysis, using Spectroscopy Made Easy (SME), and find it to be [M/H] = +0.07 \pm 0.03. We have obtained deep CFHT/MegaCam g'r'i' photometry and fit Padova isochrones to the (g' - i') and 2MASS (J - K) CMDs using the \tau^2 maximum-likelihood procedure of Naylor (2009), and an alternative method using 2D cross-correlations developed in this work. We find best fits for isochrones at age t = 2.5 \pm 0.25 Gyr, m - M = 7.35 \pm 0.1, and A_V = 0.25 \pm 0.05, with additional uncertainty from the unresolved binary population and possibility of differential extinction across this large cluster. The inferred age is heavily dependent by our choice of stellar evolution model: fitting Dartmouth and PARSEC models yield age parameters of 3 Gyr and 3.25 Gyr respectively. At approximately 300 pc and 3 Gyr, Ruprecht 147 is by far the oldest nearby star cluster.Comment: 31 pages, 21 figures, 6 tables. Comments welcom

    The Age of the Milky Way Inner Halo

    Full text link
    The Milky Way galaxy is observed to have multiple components with distinct properties, such as the bulge, disk, and halo. Unraveling the assembly history of these populations provides a powerful test to the theory of galaxy formation and evolution, but is often restricted due to difficulties in measuring accurate stellar ages for low mass, hydrogen-burning stars. Unlike these progenitors, the "cinders" of stellar evolution, white dwarf stars, are remarkably simple objects and their fundamental properties can be measured with little ambiguity from spectroscopy. Here I report observations and analysis of newly formed white dwarf stars in the halo of the Milky Way, and a comparison to published analysis of white dwarfs in the well-studied 12.5 billion-year-old globular cluster Messier 4. From this, I measure the mass distribution of the remnants and invert the stellar evolution process to develop a new relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically-confirmed halo white dwarfs, I measure the age of local field halo stars to be 11.4 +/- 0.7 billion years. This age is directly tied to the globular cluster age scale, on which the oldest clusters formed 13.5 billion years ago. Future (spectroscopic) observations of newly formed white dwarfs in the Milky Way halo can be used to reduce the present uncertainty, and to probe relative differences between the formation time of the last clusters and the inner halo.Comment: Published in Nature, 2012, 486, 90. Second version corrects a missing reference (#10) in the third paragraph and Figure 1 captio

    Topographically Influenced Evolution of Large-scale Changes in Comet 67P/Churyumov-Gerasimenko's Imhotep Region

    Get PDF
    Large portions of comet 67P/Churyumov–Gerasimenko’s northern hemisphere are blanketed by fallback material consisting of centimeter-sized particles termed the smooth terrains. Observations from the Rosetta mission show that the most drastic transient changes during 67P’s 2015 perihelion passage occurred within a subset of these deposits. However, we still do not understand the processes driving these changes, limiting our overall understanding of how comets evolve over both seasonal and multiorbit timescales. Herein we provide a complete documentation of scarp-driven activity on 67P’s largest smooth terrain deposit, a highly active portion of the Imhotep region that is the southernmost of all smooth terrain basins on 67P. We also present a thermal model that accurately predicts when and where scarps originate during the course of the observed activity. Assuming a uniform surface composition, our model shows that activity is heavily controlled by local topography rather than the presence of ice-enhanced hot spots on the surface. Scarps within the smooth terrain deposits in central Imhotep also exhibit a peculiar behavior, where three scarps originate from the same location but at different times and migrate in opposite directions. This behavior indicates that the landscape retains a memory of previous cycles of erosion and deposition, reflected by the depth of the volatile-rich layer. Future work will need to couple our thermal model with a landscape evolution model in order to explain the complete dynamic evolution of these terrains

    The NASA Roadmap to Ocean Worlds

    Get PDF
    In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find. The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists
    • 

    corecore