79 research outputs found

    Mating-induced transient inhibition of responses to sex pheromone in a male moth is not mediated by octopamine or serotonin

    Get PDF
    In the male moth, Agrotis ipsilon, mating induces a transient inhibition of behavioural and central nervous responses to sex pheromone. Newly mated males are not attracted to sex pheromone, and the sensitivity of their antennal lobe (AL) neurons is lower than in virgin males. This rapid transient olfactory inhibition prevents them from re-mating unsuccessfully until they have refilled their sex glands. We hypothesized that this olfactory ‘switch off’ might be controlled by neuromodulators such as biogenic amines. To test our hypothesis, we studied the effects of octopamine (OA) and serotonin (5-hydroxytryptamine, 5-HT) on the coding properties of pheromone-sensitive AL neurons in virgin and newly mated males. We show that AL neuron sensitivity increased in newly mated males after injection of OA or 5-HT, but only OA treatment affected certain response characteristics of AL neurons in virgin males. Whereas all measured AL neuron response characteristics were different between virgin and newly mated males, amine treatment in newly mated males restored only the latency and spike frequency, but not the duration of excitatory and inhibitory phases, which were initially found in virgin males. Additionally, we investigated the behavioural effects of OA and 5-HT treatments in virgin and mated males. Although OA and 5-HT enhanced the general flight activity of newly mated males, amine treatments did not restore the behavioural pheromone response of mated moths. Altogether, these results show that, although biogenic amines modulate the olfactory system in moths, OA and 5-HT are probably not involved in the post-mating inhibition of responses to sex pheromone in A. ipsilon males.Fil: Barrozo, Romina. Institut National de la Recherche Agronomique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jarriault, David. Institut National de la Recherche Agronomique; FranciaFil: Simeone, Xenia. Institut National de la Recherche Agronomique; FranciaFil: Gaertner, Cyril. Institut National de la Recherche Agronomique; FranciaFil: Gadenne, Christophe. Institut National de la Recherche Agronomique; FranciaFil: Anton, Sylvia. Institut National de la Recherche Agronomique; Franci

    YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development

    Get PDF
    © Copyright Neto et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels.FN was financially supported by the Fundação para a Ciência e a Tecnologia (FCT), CRUK-CRICK and the MDC. ACV, AKB and EBK were supported by the DZHK (German Centre for Cardiovascular Research), AS was supported by the EMBO (European Molecular Biology Organization), JRC was supported by the FCT. CAF is supported by the FCT, EC-ERC Starting Grant, Portugal2020 program. MP is supported by the Max Planck Society, the ERC Starting Grant ANGIOMET, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Cardiopulmonary System, the LOEWE grant Ub-Net, the DZHK, the Stiftung Charité and the EMBO Young Investigator Program. HG is supported by the DZHK and ERC Consolidator Grant Reshape 311719.info:eu-repo/semantics/publishedVersio

    Queen mandibular pheromone: questions that remain to be resolved

    No full text
    The discovery of ‘queen substance’, and the subsequent identification and synthesis of keycomponents of queen mandibular pheromone, has been of significant importance to beekeepers and to thebeekeeping industry. Fifty years on, there is greater appreciation of the importance and complexity of queenpheromones, but many mysteries remain about the mechanisms through which pheromones operate. Thediscovery of sex pheromone communication in moths occurred within the same time period, but in this case,intense pressure to find better means of pest management resulted in a remarkable focusing of research activityon understanding pheromone detection mechanisms and the central processing of pheromone signals in themoth. We can benefit from this work and here, studies on moths are used to highlight some of the gaps in ourknowledge of pheromone communication in bees. A better understanding of pheromone communication inhoney bees promises improved strategies for the successful management of these extraordinary animals

    Computational Models of the Notch Network Elucidate Mechanisms of Context-dependent Signaling

    Get PDF
    The Notch signaling pathway controls numerous cell fate decisions during development and adulthood through diverse mechanisms. Thus, whereas it functions as an oscillator during somitogenesis, it can mediate an all-or-none cell fate switch to influence pattern formation in various tissues during development. Furthermore, while in some contexts continuous Notch signaling is required, in others a transient Notch signal is sufficient to influence cell fate decisions. However, the signaling mechanisms that underlie these diverse behaviors in different cellular contexts have not been understood. Notch1 along with two downstream transcription factors hes1 and RBP-Jk forms an intricate network of positive and negative feedback loops, and we have implemented a systems biology approach to computationally study this gene regulation network. Our results indicate that the system exhibits bistability and is capable of switching states at a critical level of Notch signaling initiated by its ligand Delta in a particular range of parameter values. In this mode, transient activation of Delta is also capable of inducing prolonged high expression of Hes1, mimicking the “ON” state depending on the intensity and duration of the signal. Furthermore, this system is highly sensitive to certain model parameters and can transition from functioning as a bistable switch to an oscillator by tuning a single parameter value. This parameter, the transcriptional repression constant of hes1, can thus qualitatively govern the behavior of the signaling network. In addition, we find that the system is able to dampen and reduce the effects of biological noise that arise from stochastic effects in gene expression for systems that respond quickly to Notch signaling

    Perforated patch-clamp recording of mouse olfactory sensory neurons in intact neuroepithelium: functional analysis of neurons expressing an identified odorant receptor

    No full text
    Analyzing the physiological responses of olfactory sensory neurons (OSN) when stimulated with specific ligands is critical to understand the basis of olfactory-driven behaviors and their modulation. These coding properties depend heavily on the initial interaction between odor molecules and the olfactory receptor (OR) expressed in the OSNs. The identity, specificity and ligand spectrum of the expressed OR are critical. The probability to find the ligand of the OR expressed in an OSN chosen randomly within the epithelium is very low. To address this challenge, this protocol uses genetically tagged mice expressing the fluorescent protein GFP under the control of the promoter of defined ORs. OSNs are located in a tight and organized epithelium lining the nasal cavity, with neighboring cells influencing their maturation and function. Here we describe a method to isolate an intact olfactory epithelium and record through patch-clamp recordings the properties of OSNs expressing defined odorant receptors. The protocol allows one to characterize OSN membrane properties while keeping the influence of the neighboring tissue. Analysis of patch-clamp results yields a precise quantification of ligand/OR interactions, transduction pathways and pharmacology, OSNs' coding properties and their modulation at the membrane level

    Codade des phéromones sexuelles et sa plasticité chez la noctuelle Agrotis ipsilon

    No full text
    Chez les papillons de nuit, les mâles sont attirés par les phéromones sexuelles émises par les femelles. La réponse du mâle est déterminée à la fois par son état physiologique et par les caractéristiques propres au signal émis par la femelle. Chez notre modèle, la noctuelle Agrotis ipsilon, les mâles ne sont plus attirés par la phéromone juste après l accouplement. L étude du système olfactif par électrophysiologie sur des mâles vierges, dans un premier temps, a permis de caractériser la transformation du signal réalisée au niveau du premier relais d intégration dans le cerveau, le lobe antennaire. Nous avons ainsi montré une différence dans l encodage du signal phéromonal entre les neurones sensoriels périphériques et les neurones du lobe antennaire. Dans un deuxième temps, les réponses de ces neurones ont été comparées avec celles enregistrées chez des mâles accouplés. Nous avons observé une modulation des réponses neuronales au niveau du lobe antennaire seulement.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Fine scale measurement of biogenic amine release in the brain of the honey bee (Apis mellifera L.) in response to electric shock

    No full text
    Fine scale measurement of biogenic amine release in the brain of the honey bee ([i]Apis mellifera L.[/i]) in response to electric shock. Cold spring harbor asia conferences - invertebrate neurobiolog
    corecore