35 research outputs found

    Evaluation of a Multiparametric Immunofluorescence Assay for Standardization of Neuromyelitis Optica Serology

    Get PDF
    Background: Neuromyelitis optica (NMO) is a severely disabling autoimmune disorder of the central nervous system, which predominantly affects the optic nerves and spinal cord. In a majority of cases, NMO is associated with antibodies to aquaporin-4 (AQP4) (termed NMO-IgG). Aims: In this study, we evaluated a new multiparametric indirect immunofluorescence (IIF) assay for NMO serology. Methods: Sera from 20 patients with NMO, 41 patients with multiple sclerosis (MS), 30 healthy subjects, and a commercial anti-AQP4 IgG antibody were tested in a commercial composite immunofluorescence assay ("Neurology Mosaic 17"; Euroimmun, Germany), consisting of five different diagnostic substrates (HEK cells transfected with AQP4, non-transfected HEK cells, primate cerebellum, cerebrum, and optic nerve tissue sections). Results: We identified AQP4 specific and non-specific fluorescence staining patterns and established positivity criteria. Based on these criteria, this kit yielded a high sensitivity (95%) and specificity (100%) for NMO and had a significant positive and negative likelihood ratio (LR+ = ∞, LR- = 0.05). Moreover, a 100% inter- and intra-laboratory reproducibility was found. Conclusions: The biochip mosaic assay tested in this study is a powerful tool for NMO serology, fast to perform, highly sensitive and specific for NMO, reproducible, and suitable for inter-laboratory standardization as required for multi-centre clinical trials

    Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance

    Get PDF
    In 70-80% of cases, neuromyelitis optica (NMO) is associated with highly specific serum auto-antibodies to aquaporin-4 (termed AQP4-Ab or NMO-IgG). Recent evidence strongly suggests that AQP4-Ab are directly involved in the immunopathogenesis of NMO

    Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

    Get PDF
    BACKGROUND: The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. OBJECTIVE: To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. METHODS: Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). RESULTS: Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. CONCLUSION: This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients

    Aquaporin-4 Antibodies Are Not Related to HTLV-1\ud Associated Myelopathy

    Get PDF
    Introduction: The seroprevalence of human T-cell leukemia virus type 1 (HTLV-1) is very high among Brazilians (,1:200).\ud HTLV-1 associated myelopathy or tropical spastic paraparesis (HAM/TSP) is the most common neurological complication of\ud HTLV-1 infection. HAM/TSP can present with an acute/subacute form of longitudinally extensive myelitis, which can be\ud confused with lesions seen in aquaporin-4 antibody (AQP4-Ab) positive neuromyelitis optica spectrum disorders (NMOSD)\ud on MRI. Moreover, clinical attacks in patients with NMOSD have been shown to be preceded by viral infections in around\ud 30% of cases.\ud Objective: To evaluate the frequency of AQP4-Ab in patients with HAM/TSP. To evaluate the frequency of HTLV-1 infection\ud in patients with NMOSD.\ud Patients and Methods: 23 Brazilian patients with HAM/TSP, 20 asymptomatic HTLV-1+ serostatus patients, and 34 with\ud NMOSD were tested for AQP4-Ab using a standardized recombinant cell based assay. In addition, all patients were tested for\ud HTLV-1 by ELISA and Western blotting.\ud Results: 20/34 NMOSD patients were positive for AQP4-Ab but none of the HAM/TSP patients and none of the\ud asymptomatic HTLV-1 infected individuals. Conversely, all AQP4-Ab-positive NMOSD patients were negative for HTLV-1\ud antibodies. One patient with HAM/TSP developed optic neuritis in addition to subacute LETM; this patient was AQP4-Ab\ud negative as well. Patients were found to be predominantly female and of African descent both in the NMOSD and in the\ud HAM/TSP group; Osame scale and expanded disability status scale scores did not differ significantly between the two\ud groups.\ud Conclusions: Our results argue both against a role of antibodies to AQP4 in the pathogenesis of HAM/TSP and against an\ud association between HTLV-1 infection and the development of AQP4-Ab. Moreover, the absence of HTLV-1 in all patients\ud with NMOSD suggests that HTLV-1 is not a common trigger of acute attacks in patients with AQP4-Ab positive NMOSD in\ud populations with high HTLV-1 seroprevalence.This study received financial support from the Brazilian government agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo - www. fapesp.br/en) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - www.capes.gov.br). The work of S.J. and B.W. was supported by research grants from Bayer Schering Healthcare and from Merck Serono. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Cerebrospinal fluid biomarkers for predicting development of multiple sclerosis in acute optic neuritis: a population-based prospective cohort study

    Get PDF
    Background: Long-term outcome in multiple sclerosis (MS) depends on early treatment. In patients with acute optic neuritis (ON), an early inflammatory event, we investigated markers in cerebrospinal fluid (CSF), which may predict a diagnosis of MS. Methods: Forty patients with acute ON were recruited in a prospective population-based cohort with median 29 months (range 19–41) of follow-up. Paired CSF and serum samples were taken within 14 days (range 2–38), prior to treatment. Prospectively, 16/40 patients were by a uniform algorithm diagnosed with MS (MS-ON) and 24 patients continued to manifest isolated ON (ION) during follow-up. Levels of cytokines and neurofilament light chain (NF-L) were measured at the onset of acute ON and compared to healthy controls (HC). Significance levels were corrected for multiple comparisons (“q”). The predictive value of biomarkers was determined with multivariable prediction models using nomograms. Results: CSF TNF-α, IL-10, and CXCL13 levels were increased in MS-ON compared to those in ION patients (q = 0.021, 0.004, and 0.0006, respectively). MS-ON patients had increased CSF pleocytosis, IgG indices, and oligoclonal bands (OCBs) compared to ION (q = 0.0007, q = 0.0058, and q = 0.0021, respectively). CSF levels of IL-10, TNF-a, IL-17A, and CXCL13 in MS-ON patients correlated with leukocyte counts (r > 0.69 and p < 0.002) and IgG index (r > 0.55, p < 0.037). CSF NF-L levels were increased in ON patients compared to those in HC (q = 0.0077). In MS-ON, a progressive increase in NF-L levels was observed at 7 to 14 days after disease onset (r = 0.73, p < 0.0065). Receiver-operating characteristic (ROC) curves for two multivariable prediction models were generated, with IL-10, CXCL13, and NF-L in one (“candidate”) and IgG index, OCB, and leukocytes in another (“routine”). Area under the curve was 0.89 [95% CI 0.77–1] and 0.86 [0.74–0.98], respectively. Predictions of the risk of MS diagnosis were illustrated by two nomograms. Conclusions: CSF TNF-α, IL-10, CXCL13, and NF-L levels were associated with the development of MS, suggesting that the inflammatory and neurodegenerative processes occurred early. Based on subsequent diagnosis, we observed a high predictive value of routine and candidate biomarkers in CSF for the development of MS in acute ON. The nomogram predictions may be useful in the diagnostic work-up of MS

    Interleukin-6 receptor blockade in treatment-refractory MOG-IgG–associated disease and neuromyelitis optica spectrum disorders

    Get PDF
    BACKGROUND AND OBJECTIVES: To evaluate the long-term safety and efficacy of tocilizumab (TCZ), a humanized anti–interleukin-6 receptor antibody in myelin oligodendrocyte glycoprotein–IgG–associated disease (MOGAD) and neuromyelitis optica spectrum disorders (NMOSD). METHODS: Annualized relapse rate (ARR), Expanded Disability Status Scale score, MRI, autoantibody titers, pain, and adverse events were retrospectively evaluated in 57 patients with MOGAD (n = 14), aquaporin-4 (AQP4)-IgG seropositive (n = 36), and seronegative NMOSD (n = 7; 12%), switched to TCZ from previous immunotherapies, particularly rituximab. RESULTS: Patients received TCZ for 23.8 months (median; interquartile range 13.0–51.1 months), with an IV dose of 8.0 mg/kg (median; range 6–12 mg/kg) every 31.6 days (mean; range 26–44 days). For MOGAD, the median ARR decreased from 1.75 (range 0.5–5) to 0 (range 0–0.9; p = 0.0011) under TCZ. A similar effect was seen for AQP4-IgG+ (ARR reduction from 1.5 [range 0–5] to 0 [range 0–4.2]; p < 0.001) and for seronegative NMOSD (from 3.0 [range 1.0–3.0] to 0.2 [range 0–2.0]; p = 0.031). During TCZ, 60% of all patients were relapse free (79% for MOGAD, 56% for AQP4-IgG+, and 43% for seronegative NMOSD). Disability follow-up indicated stabilization. MRI inflammatory activity decreased in MOGAD (p = 0.04; for the brain) and in AQP4-IgG+ NMOSD (p < 0.001; for the spinal cord). Chronic pain was unchanged. Regarding only patients treated with TCZ for at least 12 months (n = 44), ARR reductions were confirmed, including the subgroups of MOGAD (n = 11) and AQP4-IgG+ patients (n = 28). Similarly, in the group of patients treated with TCZ for at least 12 months, 59% of them were relapse free, with 73% for MOGAD, 57% for AQP4-IgG+, and 40% for patients with seronegative NMOSD. No severe or unexpected safety signals were observed. Add-on therapy showed no advantage compared with TCZ monotherapy. DISCUSSION: This study provides Class III evidence that long-term TCZ therapy is safe and reduces relapse probability in MOGAD and AQP4-IgG+ NMOSD
    corecore