8 research outputs found

    Knowledge Management Jobs in Kenya: A Functional Analysis

    Get PDF
    Rationale of study – Most organisations in Kenya face challenges integrating the knowledge management function in their structures due to the lack of a clear understanding of what knowledge managers should do. Consequently, there currently exist varied, unpredictable and often shallow job descriptions associated with knowledge managers. Methodology - The researchers conducted a functional analysis of knowledge management jobs in Kenya in an effort to establish the general job titles used to refer to knowledge management specialists, ascertain their position in the organisational structure, explore their job responsibilities and requirements, as well as understand any special requirements associated with knowledge management roles. Data was obtained through a content analysis of job advertisements carried in the Daily Nation and Standard, which are the leading newspapers in Kenya,. Additional data was also obtained from online job advertisement platforms. Findings - Most organisations in Kenya do not have a good understanding of what knowledge management specialists do. Consequently, existing knowledge management positions have ambiguous and diverse job descriptions and requirements. Implications - The findings of this study can be used by organisations in Kenya to develop appropriate knowledge management job descriptions for knowledge management professionals. The findings may also be used by the relevant training institutions to develop and deploy relevant curricula to equip the potential knowledge management professionals with the requisite skills. Originality - The researchers propose a model job description for knowledge management specialists which may be applied by organisations in Kenya and beyond

    Spatiotemporal dynamics of wild herbivore species richness and occupancy across a savannah rangeland:Implications for conservation

    Get PDF
    Private lands are critical for maintaining biodiversity beyond protected areas. Across Kenyan rangelands, wild herbivores frequently coexist with people and their livestock. Human population and livestock numbers are projected to increase dramatically over the coming decades. Therefore, a better understanding of wildlife-livestock interactions and their consequences for biodiversity conservation on private lands is needed. We used a Bayesian hierarchical, multi-species and multi-year occupancy model on aerial survey data of 15 wild-herbivore species, spanning 15 years (2001–2016) to investigate a) spatiotemporal trends in species occurrence and richness across a mosaic of properties with different land uses in Laikipia County, central Kenya; and b) the effects of distance to water, vegetation and livestock relative abundance on species occurrence and richness. Although mean herbivore species richness varied little over time, we observed high spatial variation in species occurrence across Laikipia, mainly driven by negative effects of high livestock relative abundance. As expected, ‘wildlife friendly’ properties had higher herbivore species richness than other areas. However, high variability suggests that some pastoral properties support rich herbivore communities. The area occupied by five species with global conservation concerns (reticulated giraffe, Grevy's zebra, Beisa Oryx, Defassa waterbuck and gerenuk) and for which Laikipia County is one of the last refuges was <50% across years. We conclude that ‘wildlife friendly’ properties remain crucial for conservation, although some pastoralist areas offer suitable habitats for wild herbivores. Effective management of stocking rates is critical for maintaining ecosystems able to sustain livestock and wildlife on private lands, ensuring protection for endangered species

    Increasing anthropogenic disturbance restricts wildebeest movement across East African grazing systems

    Get PDF
    The ability to move is essential for animals to find mates, escape predation, and meet energy and water demands. This is especially important across grazing systems where vegetation productivity can vary drastically between seasons or years. With grasslands undergoing significant changes due to climate change and anthropogenic development, there is an urgent need to determine the relative impacts of these pressures on the movement capacity of native herbivores. To measure these impacts, we fitted 36 white-bearded wildebeest (Connochaetes taurinus) with GPS collars across three study areas in southern Kenya (Amboseli Basin, Athi-Kaputiei Plains, and Mara) to test the relationship between movement (e.g., directional persistence, speed, home range crossing time) and gradients of vegetation productivity (i.e., NDVI) and anthropogenic disturbance. As expected, wildebeest moved the most (21.0 km day–1; CI: 18.7–23.3) across areas where movement was facilitated by low human footprint and necessitated by low vegetation productivity (Amboseli Basin). However, in areas with moderate vegetation productivity (Athi-Kaputiei Plains), wildebeest moved the least (13.3 km day–1; CI: 11.0–15.5). This deviation from expectations was largely explained by impediments to movement associated with a large human footprint. Notably, the movements of wildebeest in this area were also less directed than the other study populations, suggesting that anthropogenic disturbance (i.e., roads, fences, and the expansion of settlements) impacts the ability of wildebeest to move and access available resources. In areas with high vegetation productivity and moderate human footprint (Mara), we observed intermediate levels of daily movement (14.2 km day–1; CI: 12.3–16.1). Wildebeest across each of the study systems used grassland habitats outside of protected areas extensively, highlighting the importance of unprotected landscapes for conserving mobile species. These results provide unique insights into the interactive effects of climate and anthropogenic development on the movements of a dominant herbivore in East Africa and present a cautionary tale for the development of grazing ecosystems elsewhere

    Moving through the mosaic: Identifying critical linkage zones for large herbivores across a multiple‐use African landscape

    Get PDF
    Context: Reduced connectivity across grassland ecosystems can impair their functional heterogeneity and negatively impact large herbivore populations. Maintaining landscape connectivity across human-dominated rangelands is therefore a key conservation priority. Objective: Integrate data on large herbivore occurrence and species richness with analyses of functional landscape connectivity to identify important areas for maintaining or restoring connectivity for large herbivores. Methods: The study was conducted on a landscape with a mosaic of multiple land uses in Laikipia County, Kenya. We used occupancy estimates for four herbivore species [African elephant (Loxodonta africana), reticulated giraffe (Giraffa reticulata), plains zebra (Equus quagga), and Grevy’s zebra (Equus grevyi)] and species richness estimates derived from aerial surveys to create resistance surfaces to movement for single species and a multi-species assemblage, respectively. We validated single-species resistance surfaces using telemetry data. We used circuit theory and least cost-path analyses to model linkage zones across the landscape and prioritize areas for connectivity restoration. Results: Resistance layers approximated the movements of our focal species. Results for single-species and multi-species connectivity models were highly correlated (rp > 0.9), indicating similar spatial patterns of functional connectivity between individual species and the larger herbivore assemblage. We identified critical linkage zones that may improve permeability to large-herbivore movements. Conclusion: Our analysis highlights the utility of aerial surveys in modeling landscape connectivity and informing conservation management when animal movement data are scarce. Our results can guide management decisions, providing valuable information to evaluate the trade-offs between improving landscape connectivity and safeguarding livelihoods with electrified fences across rangelands

    Mapping out a future for ungulate migrations : Limited mapping of migrations hampers conservation

    No full text

    Mapping out a future for ungulate migrations

    No full text
    Migration of ungulates (hooved mammals) is a fundamental ecological process that promotes abundant herds, whose effects cascade up and down terrestrial food webs. Migratory ungulates provide the prey base that maintains large carnivore and scavenger populations and underpins terrestrial biodiversity (fig. S1). When ungulates move in large aggregations, their hooves, feces, and urine create conditions that facilitate distinct biotic communities. The migrations of ungulates have sustained humans for thousands of years, forming tight cultural links among Indigenous people and local communities. Yet ungulate migrations are disappearing at an alarming rate (1). Efforts by wildlife managers and conservationists are thwarted by a singular challenge: Most ungulate migrations have never been mapped in sufficient detail to guide effective conservation. Without a strategic and collaborative effort, many of the world's great migrations will continue to be truncated, severed, or lost in the coming decades. Fortunately, a combination of animal tracking datasets, historical records, and local and Indigenous knowledge can form the basis for a global atlas of migrations, designed to support conservation action and policy at local, national, and international levels

    Mapping out a future for ungulate migrations : Limited mapping of migrations hampers conservation

    No full text
    corecore