324 research outputs found

    The emergence of the singular boundary from the crease in 3D3D compressible Euler flow

    Full text link
    We study the Cauchy problem for the 3D3D compressible Euler equations under an arbitrary equation of state with positive speed of sound, aside from that of a Chaplygin gas. For open sets of smooth initial data with non-trivial vorticity and entropy, our main results yield a constructive proof of the formation, structure, and stability of the singular boundary, which is the set of points where the solution forms a shock singularity, i.e., where some first-order Cartesian coordinate partial derivatives of the velocity and density blow up. We prove that in the solution regime under study, the singular boundary has the structure of a degenerate, acoustically null 3D3D submanifold-with-boundary. Our approach yields the full structure of a neighborhood of a connected component of the crease, which is a 2D2D acoustically spacelike submanifold equal to the past boundary of the singular boundary. In the study of shocks, the crease plays the role of the "true initial singularity" from which the singular boundary emerges, and it is a crucial ingredient for setting up the shock development problem. These are the first results revealing the totality of these structures without symmetry, irrotationality, or isentropicity assumptions. Moreover, even within the sub-class of irrotational and isentropic solutions, these are the first constructive results revealing these structures without a strict convexity assumption on the shape of the singular boundary. Our proof relies on a new method: the construction of rough foliations of spacetime, dynamically adapted to the exact shape of the singular boundary and crease, where the latter is provably two degrees less differentiable than the fluid.Comment: 16 figure

    A Multiwavelength Classification and Study of Red Supergiant Candidates in NGC 6946

    Full text link
    We have combined resolved stellar photometry from Hubble Space Telescope (\emph{HST}), \emph{Spitzer}, and \emph{Gaia} to identify red supergiant (RSG) candidates in NGC~6946, based on their colors, proper motions, visual morphologies, and spectral energy distributions. We start with a large sample of 17,865 RSG candidates based solely on \emph{HST} near-infrared photometry. We then chose a small sample of 385 of these candidates with Spitzer matches for more detailed study. Using evolutionary models and isochrones, we isolate a space where RSGs would be found in our photometry catalogs. We then visually inspect each candidate and compare to Gaia catalogs to identify and remove foreground stars. As a result, we classify 95 potential RSGs, with 40 of these being in our highest-quality sample. We fit the photometry of the populations of stars in the regions surrounding the RSGs to infer their ages. Placing our best candidate RSG stars into three age bins between 1 and 30 Myr, we find 27.5\% of the candidates falling between 1-10 Myr, 37.5\% between 10-20 Myr, and 35\% 20-30 Myr. A comparison of our results to the models of massive star evolution shows some agreement between model luminosities and the luminosities of our candidates for each age. Three of our candidates appear significantly more consistent with binary models than single-star evolution models.Comment: 32 pages, 18 figures, 4 table

    Computational Insights into Mg-Cl Complex Electrolytes for Rechargeable Magnesium Batteries

    Get PDF
    DFT calculations were conducted to provide insightful and unprecedented thermodynamic insights on tetrahydrofuran (THF) solvation, isomerization, chlorination, and complexation of possible Mg-Cl coordination species for the popular Mg-Cl electrolytes. Computational results using the M06-2x functional with the 6-31+G(d) basis set indicate trigonal bipyramidal e, e-cis-tbp-MgCl2(THF)3 dichloride species and octahedral [MgCl(THF)5]+ monochloride species are the dominant mononuclear species. These two can combine to form the active dinuclear species, [(Ό-Cl)3Mg2(THF)6]+ with a free energy -6.30 kcal/mol, which is calculated to be the dominant Mg-Cl species in solution. Two mono-cation species, [(Ό-Cl)3Mg2(THF)6]+ and [MgCl(THF)5]+ have comparable LUMO energies, thus both of them can act as active species for Mg deposition. However, the significant dominance of the dinuclear species in the electrolyte indicates that it is the primary species involved in reversible Mg deposition

    A survey of current, stand-alone OWL Reasoners

    Get PDF
    Abstract. We present a survey of the current OWL reasoner landscape. Through literature and web search we have identified 35 OWL reasoners that are, at least to some degree, actively maintained. We conducted a survey directly addressing the respective developers, and collected 33 responses. We present an analysis of the survey, characterising all reasoners across a wide range of categories such as supported expressiveness and reasoning services. We will also provide some insight about ongoing research efforts and a rough categorisation of reasoner calculi

    Updated standardized definitions for efficacy endpoints in adjuvant breast cancer clinical trials: STEEP Version 2.0

    Get PDF
    Purpose The Standardized Definitions for Efficacy End Points (STEEP) criteria, established in 2007, provide standardized definitions of adjuvant breast cancer clinical trial end points. Given the evolution of breast cancer clinical trials and improvements in outcomes, a panel of experts reviewed the STEEP criteria to determine whether modifications are needed.Methods We conducted systematic searches of ClinicalTrials.gov for adjuvant systemic and local-regional therapy trials for breast cancer to investigate if the primary end points reported met STEEP criteria. On the basis of common STEEP deviations, we performed a series of simulations to evaluate the effect of excluding non-breast cancer deaths and new nonbreast primary cancers from the invasive disease-free survival end point.Results Among 11 phase III breast cancer trials with primary efficacy end points, three had primary end points that followed STEEP criteria, four used STEEP definitions but not the corresponding end point names, and four used end points that were not included in the original STEEP manuscript. Simulation modeling demonstrated that inclusion of second nonbreast primary cancer can increase the probability of incorrect inferences, can decrease power to detect clinically relevant efficacy effects, and may mask differences in recurrence rates, especially when recurrence rates are low.Conclusion We recommend an additional end point, invasive breast cancer-free survival, which includes all invasive disease-free survival events except second nonbreast primary cancers. This end point should be considered for trials in which the toxicities of agents are well-known and where the risk of second primary cancer is small. Additionally, we provide end point recommendations for local therapy trials, low-risk populations, noninferiority trials, and trials incorporating patient-reported outcomes

    Observation of a kilogram-scale oscillator near its quantum ground state

    Get PDF
    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system—an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10[superscript −18] m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 ÎŒK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.Alfred P. Sloan FoundationUnited States. National Aeronautics and Space AdministrationDavid & Lucile Packard FoundationResearch CorporationNational Science Foundation (U.S.

    ASIRI : an ocean–atmosphere initiative for Bay of Bengal

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∌300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2

    52 Genetic Loci Influencing Myocardial Mass.

    Get PDF
    BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets

    Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

    Get PDF
    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License
    • 

    corecore