32 research outputs found

    Obsalim : présentation et tests d’efficacité à court terme dans des élevages bovins laitiers français

    Get PDF
    L’objectif premier de cette étude est de présenter l’outil de diagnostic et la méthode de réglage alimentaire des rations de ruminants : OBSALIM®. Le second objectif est d’évaluer son efficacité à court terme dans des élevages de bovins laitiers français. L’évaluation a été réalisée dans 3 élevages conventionnels et 6 élevages bio sur une durée de 6 mois. Cinq paramètres ont été étudiés : la production laitière, le gaspillage alimentaire, la valorisation fourragère, l’économie de la ration et la hauteur des galettes de bouse. La comparaison de l’évolution de ces paramètres, entre les élevages n’ayant pas suivi les recommandations OBSALIM® et ceux les ayant partiellement suivi, n’a pas permis de montrer un bénéfice ou un risque significatif à l’application de cette méthode dans ces élevages

    Cerebral Small Vessel Disease burden is increased in Systemic Lupus Erythematosus

    Get PDF
    BACKGROUND AND PURPOSE—: Systemic lupus erythematosus (SLE) increases stroke risk, but the mechanism is uncertain. This study aimed to determine the association between SLE and features on neuroimaging of cerebral small vessel disease (SVD), a risk factor for stroke. METHODS—: Consecutive patients attending a clinic for SLE were recruited. All patients underwent brain magnetic resonance imaging; had blood samples taken for markers of inflammation, endothelial dysfunction, cholesterol, and autoantibodies; and underwent cognitive and psychiatric testing. The data were compared with sex- and age-matched healthy controls and patients with minor stroke. Features of SVD were measured, a total SVD score calculated, and associations sought with vascular risk factors, cognition, SLE activity, and disease duration. RESULTS—: Fifty-one SLE patients (age: 48.8 years; SD: 14.3 years) had a greater total SVD score compared with healthy controls (1 versus 0; P<0.0001) and stroke patients (1 versus 0; P=0.02). There were higher perivascular spaces and deep white matter hyperintensity scores and more superficial brain atrophy in SLE patients versus healthy controls. Despite fewer vascular risk factors than similarly aged stroke patients, SLE patients had similar or more of some SVD features. The total SVD score was not associated with SLE activity, cognition, disease duration, or any blood measure. CONCLUSIONS—: In this data set, SLE patients had a high burden of SVD features on magnetic resonance imaging, particularly perivascular spaces. A larger longitudinal study is warranted to determine the causes of SVD features in SLE and clinical implications

    Pollen and spores as biological recorders of past ultraviolet irradiance

    Get PDF
    Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes. Here, we show that a recently developed proxy for ultraviolet irradiance based on spore and pollen chemistry can be used over long (105 years) timescales. Firstly we demonstrate that spatial variations in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record from Lake Bosumtwi in Ghana. As anticipated, variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21 thousand years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system

    Magnetic Resonance Imaging Tissue Signatures Associated With White Matter Changes Due to Sporadic Cerebral Small Vessel Disease Indicate That White Matter Hyperintensities Can Regress

    Get PDF
    Background White matter hyperintensities (WMHs) might regress and progress contemporaneously, but we know little about underlying mechanisms. We examined WMH change and underlying quantitative magnetic resonance imaging tissue measures over 1 year in patients with minor ischemic stroke with sporadic cerebral small vessel disease. Methods and Results We defined areas of stable normal‐appearing white matter, stable WMHs, progressing and regressing WMHs based on baseline and 1‐year brain magnetic resonance imaging. In these areas we assessed tissue characteristics with quantitative T1, fractional anisotropy (FA), mean diffusivity (MD), and neurite orientation dispersion and density imaging (baseline only). We compared tissue signatures cross‐sectionally between areas, and longitudinally within each area. WMH change masks were available for N=197. Participants' mean age was 65.61 years (SD, 11.10), 59% had a lacunar infarct, and 68% were men. FA and MD were available for N=195, quantitative T1 for N=182, and neurite orientation dispersion and density imaging for N=174. Cross‐sectionally, all 4 tissue classes differed for FA, MD, T1, and Neurite Density Index. Longitudinally, in regressing WMHs, FA increased with little change in MD and T1 (difference estimate, 0.011 [95% CI, 0.006–0.017]; −0.002 [95% CI, −0.008 to 0.003] and −0.003 [95% CI, −0.009 to 0.004]); in progressing and stable WMHs, FA decreased (−0.022 [95% CI, −0.027 to −0.017] and −0.009 [95% CI, −0.011 to −0.006]), whereas MD and T1 increased (progressing WMHs, 0.057 [95% CI, 0.050–0.063], 0.058 [95% CI, 0.050 –0.066]; stable WMHs, 0.054 [95% CI, 0.045–0.063], 0.049 [95% CI, 0.039–0.058]); and in stable normal‐appearing white matter, MD increased (0.004 [95% CI, 0.003–0.005]), whereas FA and T1 slightly decreased and increased (−0.002 [95% CI, −0.004 to −0.000] and 0.005 [95% CI, 0.001–0.009]). Conclusions Quantitative magnetic resonance imaging shows that WMHs that regress have less abnormal microstructure at baseline than stable WMHs and follow trajectories indicating tissue improvement compared with stable and progressing WMHs

    Cerebrovascular Reactivity in Patients With Small Vessel Disease: A Cross-Sectional Study

    Get PDF
    BACKGROUND: Cerebrovascular reactivity (CVR) is inversely related to white matter hyperintensity severity, a marker of cerebral small vessel disease (SVD). Less is known about the relationship between CVR and other SVD imaging features or cognition. We aimed to investigate these cross-sectional relationships. METHODS: Between 2018 and 2021 in Edinburgh, we recruited patients presenting with lacunar or cortical ischemic stroke, whom we characterized for SVD features. We measured CVR in subcortical gray matter, normal-appearing white matter, and white matter hyperintensity using 3T magnetic resonance imaging. We assessed cognition using Montreal Cognitive Assessment. Statistical analyses included linear regression models with CVR as outcome, adjusted for age, sex, and vascular risk factors. We reported regression coefficients with 95% CIs. RESULTS: Of 208 patients, 182 had processable CVR data sets (median age, 68.2 years; 68% men). Although the strength of association depended on tissue type, lower CVR in normal-appearing tissues and white matter hyperintensity was associated with larger white matter hyperintensity volume (BNAWM=−0.0073 [95% CI, −0.0133 to −0.0014] %/mm Hg per 10-fold increase in percentage intracranial volume), more lacunes (BNAWM=−0.00129 [95% CI, −0.00215 to −0.00043] %/mm Hg per lacune), more microbleeds (BNAWM=−0.00083 [95% CI, −0.00130 to −0.00036] %/mm Hg per microbleed), higher deep atrophy score (BNAWM=−0.00218 [95% CI, −0.00417 to −0.00020] %/mm Hg per score point increase), higher perivascular space score (BNAWM=−0.0034 [95% CI, −0.0066 to −0.0002] %/mm Hg per score point increase in basal ganglia), and higher SVD score (BNAWM=−0.0048 [95% CI, −0.0075 to −0.0021] %/mm Hg per score point increase). Lower CVR in normal-appearing tissues was related to lower Montreal Cognitive Assessment without reaching convention statistical significance (BNAWM=0.00065 [95% CI, −0.00007 to 0.00137] %/mm Hg per score point increase). CONCLUSIONS: Lower CVR in patients with SVD was related to more severe SVD burden and worse cognition in this cross-sectional analysis. Longitudinal analysis will help determine whether lower CVR predicts worsening SVD severity or vice versa

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore