950 research outputs found

    Co-activation of NF-κB and MYC renders cancer cells addicted to IL6 for survival and phenotypic stability

    Get PDF
    NF-κB and MYC are found co-deregulated in human B and plasma-cell cancers. In physiology, NF-κB is necessary for terminal B-to-plasma cell differentiation, whereas MYC repression is required. It is thus unclear if NF-κB/MYC co-deregulation is developmentally compatible in carcinogenesis and/or impacts cancer cell differentiation state, possibly uncovering unique sensitivities. Using a mouse system to trace cell lineage and oncogene activation we found that NF-κB/MYC co-deregulation originated cancers with a plasmablast-like phenotype, alike human plasmablastic-lymphoma and was linked to t(8;14)[MYC-IGH] multiple myeloma. Notably, in contrast to NF-κB or MYC activation alone, co-deregulation rendered cells addicted to IL6 for survival and phenotypic stability. We propose that conflicting oncogene-driven differentiation pressures can be accommodated at a cost in poorly-differentiated cancers. SIGNIFICANCE: Our studies improve the understanding of cancer pathogenesis by demonstrating that co-deregulation of NF-κB and MYC synergize in forming a cancer with a poorly-differentiated state. The cancers in the mouse system share features with human Plasmablastic lymphoma that has a dismal prognosis and no standard of care, and with t(8;14)[MYC-IGH] Multiple myeloma, which is in overall resistant to standard therapy. Notably, we found that NF-κB and MYC co-deregulation uniquely render cells sensitive to IL6 deprivation, providing a road-map for patient selection. Because of the similarity of the cancers arising in the compound mutant mouse model with that of human Plasmablastic lymphoma and t(8;14)[MYC-IGH] Multiple myeloma, this model could serve in preclinical testing to investigate novel therapies for these hard-to-treat diseases

    Gene expression profiling reveals different pathways related to Abl and other genes that cooperate with c-Myc in a model of plasma cell neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To elucidate the genes involved in the neoplastic transformation of B cells, global gene expression profiles were generated using Affymetrix U74Av2 microarrays, containing 12,488 genes, for four different groups of mouse B-cell lymphomas and six subtypes of pristane-induced mouse plasma cell tumors, three of which developed much earlier than the others.</p> <p>Results</p> <p>Unsupervised hierarchical cluster analysis exhibited two main sub-clusters of samples: a B-cell lymphoma cluster and a plasma cell tumor cluster with subclusters reflecting mechanism of induction. This report represents the first step in using global gene expression to investigate molecular signatures related to the role of cooperating oncogenes in a model of Myc-induced carcinogenesis. Within a single subgroup, e.g., ABPCs, plasma cell tumors that contained typical T(12;15) chromosomal translocations did not display gene expression patterns distinct from those with variant T(6;15) translocations, in which the breakpoint was in the <it>Pvt-1 </it>locus, 230 kb 3' of c-<it>Myc</it>, suggesting that c-<it>Myc </it>activation was the initiating factor in both. When integrated with previously published Affymetrix array data from human multiple myelomas, the IL-6-transgenic subset of mouse plasma cell tumors clustered more closely with MM1 subsets of human myelomas, slow-appearing plasma cell tumors clustered together with MM2, while plasma cell tumors accelerated by v-Abl clustered with the more aggressive MM3-MM4 myeloma subsets. Slow-appearing plasma cell tumors expressed <it>Socs1 </it>and <it>Socs2 </it>but v-<it>Abl</it>-accelerated plasma cell tumors expressed 4–5 times as much. Both v-<it>Abl</it>-accelerated and non-v-<it>Ab</it>l-associated tumors exhibited phosphorylated STAT 1 and 3, but only v-Abl-accelerated plasma cell tumors lost viability and STAT 1 and 3 phosphorylation when cultured in the presence of the v-Abl kinase inhibitor, STI-571. These data suggest that the Jak/Stat pathway was critical in the transformation acceleration by v-Abl and that v-Abl activity remained essential throughout the life of the tumors, not just in their acceleration. A different pathway appears to predominate in the more slowly arising plasma cell tumors.</p> <p>Conclusion</p> <p>Gene expression profiling differentiates not only B-cell lymphomas from plasma cell tumors but also distinguishes slow from accelerated plasma cell tumors. These data and those obtained from the sensitivity of v-Abl-accelerated plasma cell tumors and their phosphorylated STAT proteins indicate that these similar tumors utilize different signaling pathways but share a common initiating genetic lesion, a c-<it>Myc</it>-activating chromosome translocation.</p

    Relating basic properties of bright early-type dwarf galaxies to their location in Abell 901/902

    Get PDF
    We present a study of the population of bright early-type dwarf galaxies in the multiple-cluster system Abell 901/902. We use data from the STAGES survey and COMBO-17 to investigate the relation between the color and structural properties of the dwarfs and their location in the cluster. The definition of the dwarf sample is based on the central surface brightness and includes galaxies in the luminosity range -16 >= M_B >~-19 mag. Using a fit to the color magnitude relation of the dwarfs, our sample is divided into a red and blue subsample. We find a color-density relation in the projected radial distribution of the dwarf sample: at the same luminosity dwarfs with redder colors are located closer to the cluster centers than their bluer counterparts. Furthermore, the redder dwarfs are on average more compact and rounder than the bluer dwarfs. These findings are consistent with theoretical expectations assuming that bright early-type dwarfs are the remnants of transformed late-type disk galaxies involving processes such as ram pressure stripping and galaxy harassment. This indicates that a considerable fraction of dwarf elliptical galaxies in clusters are the results of transformation processes related to interactions with their host cluster.Comment: 12 pages, 8 figures, accepted for publication in A&A, typo corrected in abstrac

    Host Shifts from Lamiales to Brassicaceae in the Sawfly Genus Athalia

    Get PDF
    Plant chemistry can be a key driver of host shifts in herbivores. Several species in the sawfly genus Athalia are important economic pests on Brassicaceae, whereas other Athalia species are specialized on Lamiales. These host plants have glucosides in common, which are sequestered by larvae. To disentangle the possible direction of host shifts in this genus, we examined the sequestration specificity and feeding deterrence of iridoid glucosides (IGs) and glucosinolates (GSs) in larvae of five species which either naturally sequester IGs from their hosts within the Plantaginaceae (Lamiales) or GSs from Brassicaceae, respectively. Furthermore, adults were tested for feeding stimulation by a neo-clerodane diterpenoid which occurs in Lamiales. Larvae of the Plantaginaceae-feeders did not sequester artificially administered p-hydroxybenzylGS and were more deterred by GSs than Brassicaceae-feeders were by IGs. In contrast, larvae of Brassicaceae-feeders were able to sequester artificially administered catalpol (IG), which points to an ancestral association with Lamiales. In line with this finding, adults of all tested species were stimulated by the neo-clerodane diterpenoid. Finally, in a phylogenetic tree inferred from genetic marker sequences of 21 Athalia species, the sister species of all remaining 20 Athalia species also turned out to be a Lamiales-feeder. Fundamental physiological pre-adaptations, such as the establishment of a glucoside transporter, and mechanisms to circumvent activation of glucosides by glucosidases are therefore necessary prerequisites for successful host shifts between Lamiales and Brassicaceae

    Assessing free-living physical activity using accelerometry : practical issues for researchers and practitioners

    Get PDF
    Physical activity is an integral component of a healthy lifestyle, with relationships documented between physical activity, chronic diseases, and disease risk factors. There is increasing concern that many people are not sufficiently active to benefit their health. Consequently, there is a need to determine the prevalence of physical activity engagement, identify active and inactive segments of the population, and evaluate the effectiveness of interventions. The aim of the present study was to identify and explain a number of methodological and decision-making processes associated with accelerometry, which is the most commonly used objective measure of physical activity in child and adult research.Specifically, this review addresses:(a) pre-data collection decisions,(b) data collection procedures,(c) processing of accelerometer data, and(d) outcome variables in relation to the research questions posed.An appraisal of the literature is provided to help researchers and practitioners begin field-based research, with recommendations offered for best practice. In addition, issues that require further investigation are identified and discussed to inform researchers and practitioners of the surrounding debates.Overall, the review is intended as a starting point for field-based physical activity research using accelerometers and as an introduction to key issues that should be considered and are likely to be encountered at this time.<br /

    Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunohistochemical detection of cold shock proteins is predictive for deleterious outcome in various malignant diseases. We recently described active secretion of a family member, denoted Y-box (YB) protein-1. We tested the clinical and diagnostic value of YB-1 protein fragment p18 (YB-1/p18) detection in blood for malignant diseases.</p> <p>Methods</p> <p>We used a novel monoclonal anti-YB-1 antibody to detect YB-1/p18 by immunoblotting in plasma samples of healthy volunteers (n = 33), patients with non-cancerous, mostly inflammatory diseases (n = 60), hepatocellular carcinoma (HCC; n = 25) and advanced solid tumors (n = 20). YB-1/p18 was then tested in 111 patients with chronic liver diseases, alongside established tumor markers and various diagnostic measures, during evaluation for potential liver transplantation.</p> <p>Results</p> <p>We developed a novel immunoblot to detect the 18 kD fragment of secreted YB-1 in human plasma (YB-1/p18) that contains the cold-shock domains (CSD) 1-3 of the full-length protein. YB-1/p18 was detected in 11/25 HCC and 16/20 advanced carcinomas compared to 0/33 healthy volunteers and 10/60 patients with non-cancerous diseases. In 111 patients with chronic liver disease, YB-1/p18 was detected in 20 samples. Its occurrence was not associated with advanced Child stages of liver cirrhosis or liver function. In this cohort, YB-1/p18 was not a good marker for HCC, but proved most powerful in detecting malignancies other than HCC (60% positive) with a lower rate of false-positive results compared to established tumor markers. Alpha-fetoprotein (AFP) was most sensitive in detecting HCC, but simultaneous assessment of AFP, CA19-9 and YB-1/p18 improved overall identification of HCC patients.</p> <p>Conclusions</p> <p>Plasma YB-1/p18 can identify patients with malignancies, independent of acute inflammation, renal impairment or liver dysfunction. The detection of YB-1/p18 in human plasma may have potential as a tumor marker for screening of high-risk populations, e.g. before organ transplantation, and should therefore be evaluated in larger prospective studies.</p
    corecore