916 research outputs found
Does the spacecraft trajectory strongly affect the detection of magnetic clouds?
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections
(ICMEs) where a magnetic flux rope is detected. Is the difference between MCs
and ICMEs without detected flux rope intrinsic or rather due to an
observational bias? As the spacecraft has no relationship with the MC
trajectory, the frequency distribution of MCs versus the spacecraft distance to
the MCs axis is expected to be approximately flat. However, Lepping and Wu
(2010) confirmed that it is a strongly decreasing function of the estimated
impact parameter. Is a flux rope more frequently undetected for larger impact
parameter? In order to answer the questions above, we explore the parameter
space of flux rope models, especially the aspect ratio, boundary shape, and
current distribution. The proposed models are analyzed as MCs by fitting a
circular linear force-free field to the magnetic field computed along simulated
crossings.
We find that the distribution of the twist within the flux rope, the
non-detection due to too low field rotation angle or magnitude are only weakly
affecting the expected frequency distribution of MCs versus impact parameter.
However, the estimated impact parameter is increasingly biased to lower values
as the flux-rope cross section is more elongated orthogonally to the crossing
trajectory. The observed distribution of MCs is a natural consequence of a
flux-rope cross section flattened in average by a factor 2 to 3 depending on
the magnetic twist profile. However, the faster MCs at 1 AU, with V>550 km/s,
present an almost uniform distribution of MCs vs. impact parameter, which is
consistent with round shaped flux ropes, in contrast with the slower ones. We
conclude that either most of the non-MC ICMEs are encountered outside their
flux rope or near the leg region, or they do not contain any
A new Groenlandaspidid Arthrodire (Vertebrata: Placodermi) from the Famennian of Belgium
A new species of the arthrodire genus Groenlandaspis is described from the upper part of the Evieux Formation (Upper Famennian), based on several specimens collected from quarries at Modave and Villers-le-Temple,Liège Province, Belgium. It is the first occurrence of this widespread genus in continental Europe. This new species is characterized by an almost smooth dermal armour, except for some scattered tubercles on its skull roof, median dorsal and spinal plates. Its median dorsal plate is triangular in shape and almost perfectly equilateral in lateral aspect and bears large, spiniform denticles on its posterior edge. All these Groenlandaspis remains occur in micaceous, dolomitic claystones or siltstones probably deposited in a subtidal environment. Outcrops of the same area have yielded other vertebrate remains, such as the placoderms Phyllolepis and Bothriolepis, acanthodians, various piscine sarcopterygians (Holoptychius, dipnoans, a rhizodontid, Megalichthys, Eusthenodon and a large tristichopterid), and a tetrapod that is probably close to Ichthyostega. The biogeographical history of the genus Groenlandaspis is briefly outlined, and the late Frasnian-Famennian interchange of vertebrate taxa between Gondwana and Euramerica is discussed
Superposed epoch study of ICME sub-structures near Earth and their effects on galactic cosmic rays
Interplanetary coronal mass ejections (ICMEs) are the interplanetary
manifestations of solar eruptions. The overtaken solar wind forms a sheath of
compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of
ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs
pass near Earth, ground observations indicate that the flux of galactic cosmic
rays (GCRs) decreases. The main aims of this paper are to find: common plasma
and magnetic properties of different ICME sub-structures, and which ICME
properties affect the flux of GCRs near Earth. We use a superposed epoch method
applied to a large set of ICMEs observed \insitu\ by the spacecraft ACE,
between 1998 and 2006. We also apply a superposed epoch analysis on GCRs time
series observed with the McMurdo neutron monitors. We find that slow MCs at 1
AU have on average more massive sheaths. We conclude that it is because they
are more effectively slowed down by drag during their travel from the Sun. Slow
MCs also have a more symmetric magnetic field and sheaths expanding similarly
as their following MC, while in contrast, fast MCs have an asymmetric magnetic
profile and a compressing sheath in compression. In all types of MCs, we find
that the proton density and the temperature, as well as the magnetic
fluctuations can diffuse within the front of the MC due to 3D reconnection.
Finally, we derive a quantitative model which describes the decrease of cosmic
rays as a function of the amount of magnetic fluctuations and field strength.
The obtained typical profiles of sheath/MC/GCR properties corresponding to
slow, mid, and fast ICMEs, can be used for forecasting/modelling these events,
and to better understand the transport of energetic particles in ICMEs. They
are also useful for improving future operative space weather activities.Comment: 13 pages, 6 figures, paper accepted in A&
Electric current in flares ribbons: observations and 3D standard model
We present for the first time the evolution of the photospheric electric
currents during an eruptive X-class flare, accurately predicted by the standard
3D flare model. We analyze this evolution for the February 15, 2011 flare using
HMI/SDO magnetic observations and find that localized currents in \J-shaped
ribbons increase to double their pre-flare intensity. Our 3D flare model,
developed with the OHM code, suggests that these current ribbons, which develop
at the location of EUV brightenings seen with AIA imagery, are driven by the
collapse of the flare's coronal current layer. These findings of increased
currents restricted in localized ribbons are consistent with the overall free
energy decrease during a flare, and the shape of these ribbons also give an
indication on how much twisted the erupting flux rope is. Finally, this study
further enhances the close correspondence obtained between the theoretical
predictions of the standard 3D model and flare observations indicating that the
main key physical elements are incorporated in the model.Comment: 12 pages, 7 figure
Going nuclear: gene family evolution and vertebrate phylogeny reconciled
Gene duplications have been common throughout vertebrate evolution, introducing paralogy and so complicating phylogenctic inference from nuclear genes. Reconciled trees are one method capable of dealing with paralogy, using the relationship between a gene phylogeny and the phylogeny of the organisms containing those genes to identify gene duplication events. This allows us to infer phylogenies from gene families containing both orthologous and paralogous copies. Vertebrate phylogeny is well understood from morphological and palaeontological data, but studies using mitochondrial sequence data have failed to reproduce this classical view. Reconciled tree analysis of a database of 118 vertebrate gene families supports a largely classical vertebrate phylogeny
Comparison of complexed species of Eu in alumina-bound and free polyacrylic acid: A spectroscopic study
International audienceThe speciation of Eu complexed with polyacrylic acid (PAA) and alumina-bound PAA (PAAads) was studied at pH 5 in 0.1 M NaClO4. Structural parameters were obtained from 7F0 → 5D0 excitation spectra measured by laser-induced fluorescence spectroscopy as well as from Eu LIII-edge extended X-ray absorption fine structure (EXAFS) spectra. The coordination mode was also investigated by infrared spectroscopy. To elucidate the nature of the complexed species, Eu–acetate complexes were used as references. The spectroscopic techniques show that two carboxylate groups with 2–3 (EuPAA) and 4–5 (EuPAAads) water molecules are coordinated to Eu in the first coordination sphere. For EuPAAads, the coordination between carboxylate groups and Eu appears to be bidendate. A similar coordination is probable for EuPAA but the EXAFS data indicate a slightly distorted coordination. The results show that the degree of freedom of carboxylate groups is not the same for free or adsorbed PAA. For PAA, the degree of freedom is constrained by the flexibility of the methylene chain. When PAA is adsorbed on alumina, the polymer chains cannot any more be treated as independent chains. One may rather assume formation of aggregates that form an organic layer at the mineral surface presenting a complex arrangement of carboxylate groups
Première découverte d'un Arthrodire (Placodermi, Vertebrata) dans le Dévonien d'Amérique du Sud
Des plaques dermiques d'un grand Arthrodire eubrachyhtoracide (Placodermi, Vertebrata), provisoirement attribuées à un Dunkleosteidae, ont été découvertes dans les faciès détritique de la Formation de Colpacucho (Famennien), sur la Péninsule de Cumana (Lac Titicaca, Bolivie). Il s'agit de la première découverte de restes d'Arthrodires en Amérique du Sud. Ces plaques d'Arthrodire sont associées à une épine de Chondrichthyen évoquant certaines espèces de "Ctenacanthus" du Famennien et du Carbonifère inférieur (Résumé d'auteur
Early fossils illuminate character evolution and interrelationships of Lampridiformes (Teleostei, Acanthomorpha)
Lampridiformes is a peculiar clade of pelagic marine acanthomorph (spiny-rayed) teleosts. Its phylogenetic position remains ambiguous, and varies depending on the type of data (morphological or molecular) used to infer interrelationships. Because the extreme morphological specializations of lampridiforms may have overwritten the ancestral features of the group with a bearing on its relationships, the inclusion of fossils that exhibit primitive character state combinations for the group as a whole is vital in establishing its phylogenetic position. Therefore, we present an osteological data set of extant (ten taxa) and fossil (14 taxa) acanthomorphs, including early Late Cretaceous taxa for which a close relationship with extant Lampridiformes has been suggested: †Aipichthyoidea, †Pharmacichthyidae, and †Pycnosteroididae. We find that all three taxa plus Lampridiformes form a clade that we call Lampridomorpha. Under this hypothesis, †Aipichthyoidea is paraphyletic. The inclusion of fossils in the analysis changes the topology, highlighting their critical importance in phylogenetic studies of morphological characters. When fossils are included, Lampridomorpha is sister to Euacanthomorpha (all other extant acanthomorphs), concurring with most previous anatomical studies, but conflicting with most molecular results. Lampridomorpha as a whole was a major component of the earliest acanthomorph faunas, notably in the Cenomanian
- …