412 research outputs found
The last-born daughter cell contributes to division orientation of Drosophila larval neuroblasts
The highly proliferative neuroblasts of the Drosophila larval brain divide over many cell cycles in a polarized manner. Here the authors show that the orientation of the axis of NB divisions is defined by the position of their last-born daughter cell
Where does asymmetry come from?:Illustrating principles of polarity and asymmetry establishment in <i>Drosophila </i>neuroblasts
Asymmetric cell division (ACD) is the fundamental process through which one cell divides into two cells with different fates. In animals, it is crucial for the generation of cell-type diversity and for stem cells, which use ACD both to self-renew and produce one differentiating daughter cell. One of the most prominent model systems of ACD, Drosophila neuroblasts, relies on the PAR complex, a conserved set of proteins governing cell polarity in animals. Here, we focus on recent advances in our understanding of the mechanisms that control the orientation of the neuroblast polarity axis, how the PAR complex is positioned, and how its activity may regulate division orientation and cell fate determinant localization and discuss how important findings about the composition polarity complexes in other models may apply to neuroblasts.</p
Notch Signaling:Where Is the Action?
It has been a long-standing question as to whether the activation of Notch by its ligands occurs in a specific region of the plasma membrane. A study now shows that this is indeed the case in the Drosophila sensory organ precursor cell lineage
Hydrobiologia / Evaluating good-practice cases for river restoration across Europe: context, methodological framework, selected results and recommendations
This introductory paper presents 20 river restoration cases throughout Europe that were investigated in the EU-funded research project REFORM. In the following, this special issue provides seven specific papers that highlight and discuss the effects of restoration on the investigated river\u2013floodplain systems. Additionally, restoration success was estimated from a socio-economic perspective. The first part of this paper presents the overall study concept and the general sampling design of the field investigations. Each study site was examined with the same array of methods, covering habitat composition in the river and its floodplain, three aquatic and two floodplain-related organism groups, as well as food web composition and \u201caquatic terrestrial\u201d interactions as reflected by stable isotopes. An overview of the rivers and the study sites summarizes main attributes of all investigated sites, with emphasis on the large-scale restoration projects. Some of the projects represent the \u201cstate of the art\u201d restoration approaches for two major European river types: gravel-bed mountain rivers and sand-bed lowland rivers. Concluding, restoration efforts had positive effects even in the small restoration projects investigated but did not increase with project size. No \u201csingle best\u201d measure could be identified, but river widening generally had a larger effect compared to other restoration measures
Requirement of the Dynein-Adaptor Spindly for Mitotic and Post-Mitotic Functions in Drosophila
Spindly was originally identified as a specific regulator of Dynein activity at the kinetochore. In early prometaphase, Spindly recruits the Dynein/Dynactin complex, promoting the establishment of stable kinetochore-microtubule interactions and progression into anaphase. While details of Spindly function in mitosis have been worked out in cultured human cells and in the C. elegans zygote, the function of Spindly within the context of an organism has not yet been addressed. Here, we present loss- and gain-of-function studies of Spindly using transgenic RNAi in Drosophila. Knock-down of Spindly in the female germ line results in mitotic arrest during embryonic cleavage divisions. We investigated the requirements of Spindly protein domains for its localisation and function, and found that the carboxy-terminal region controls Spindly localisation in a cell-type specific manner. Overexpression of Spindly in the female germ line is embryonic lethal and results in altered egg morphology. To determine whether Spindly plays a role in post-mitotic cells, we altered Spindly protein levels in migrating cells and found that ovarian border cell migration is sensitive to the levels of Spindly protein. Our study uncovers novel functions of Spindly and a differential, functional requirement for its carboxy-terminal region in Drosophila
Triton photodisintegration with realistic potentials
The photodisintegration of H is treated by means of coupled integral
equations using separable versions of the Paris and the Bonn potentials in
their kernel. The differential cross section for the inverse reaction is
obtained via detailed balance. For the latter process good agreement with the
data is found when including final-state interaction, meson exchange currents,
higher partial waves in the potential, and electric quadrupole contributions in
the electromagnetic interaction.Comment: 5 pages LaTeX and 5 postscript figures included, uses epsfig.sty and
espcrc1.sty. Talk given at the XVth International Conference on Few-Body
Problems in Physics (22-26 July, 1997, Groningen, The Netherlands). To be
published in the conference proceedings in Nucl. Phys.
Applications of Immobilization of Drosophila Tissues with Fibrin Clots for Live Imaging
Drosophila is an important model system to study a vast range of biological questions. Various organs and tissues from different developmental stages of the fly such as imaginal discs, the larval brain or egg chambers of adult females or the adult intestine can be extracted and kept in culture for imaging with time-lapse microscopy, providing valuable insights into cell and developmental biology. Here, we describe in detail our current protocol for the dissection of Drosophila larval brains, and then present our current approach for immobilizing and orienting larval brains and other tissues on a glass coverslip using Fibrin clots. This immobilization method only requires the addition of Fibrinogen and Thrombin to the culture medium. It is suitable for high-resolution time lapse imaging on inverted microscopes of multiple samples in the same culture dish, minimizes the lateral drifting frequently caused by movements of the microscope stage in multi-point visiting microscopy and allows for the addition and removal of reagents during the course of imaging. We also present custom-made macros that we routinely use to correct for drifting and to extract and process specific quantitative information from time-lapse analysis
Deuteron life-time in hot and dense nuclear matter near equilibrium
We consider deuteron formation in hot and dense nuclear matter close to
equilibrium and evaluate the life-time of the deuteron fluctuations within the
linear response theory. To this end we derive a generalized linear Boltzmann
equation where the collision integral is related to equilibrium correlation
functions. In this framework we then utilize finite temperature Green functions
to evaluate the collision integrals. The elementary reaction cross section is
evaluated within the Faddeev approach that is suitably modified to reflect the
properties of the surrounding hot and dense matter.Comment: 15 pages, 5 figure
Ensconsin/Map7 promotes microtubule growth and centrosome separation in Drosophila neural stem cells.
International audienceThe mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1
Maintenance of Miranda Localization in <i>Drosophila</i> Neuroblasts Involves Interaction with the Cognate mRNA
International audienc
- …
