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ARTICLE

The last-born daughter cell contributes to division
orientation of Drosophila larval neuroblasts
Nicolas Loyer1 & Jens Januschke 1

Controlling the orientation of cell division is important in the context of cell fate choices and

tissue morphogenesis. However, the mechanisms providing the required positional infor-

mation remain incompletely understood. Here we use stem cells of the Drosophila larval brain

that stably maintain their axis of polarity and division between cell cycles to identify cues that

orient cell division. Using live cell imaging of cultured brains, laser ablation and genetics, we

reveal that division axis maintenance relies on their last-born daughter cell. We propose that,

in addition to known intrinsic cues, stem cells in the developing fly brain are polarized by an

extrinsic signal. We further find that division axis maintenance allows neuroblasts to max-

imize their contact area with glial cells known to provide protective and proliferative signals

to neuroblasts.
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The orientation of cell division is important for cell fate
choices and impacts on the morphology and function of
tissues1,2. Therefore, perhaps not surprising, defects in

spindle orientation have been linked to developmental defects
and diseases3. Coupling spindle orientation to unequal segrega-
tion of fate determinants is one strategy during asymmetric cell
division to generate different cell fates4,5. Spindle orientation also
affects the placement of daughter cells after division. This can
alter function and fate of the resulting daughter cells as the
microenvironment in different positions can cause daughter cells
to experience different signals6.

In cells, an evolutionary conserved molecular machinery helps
to position the spindle by anchoring the astral microtubules to
cortical attachment sites7,8. A key challenge in this context is
understanding the spatial information that determines the posi-
tion of these attachment sites. The machinery anchoring micro-
tubules at the cortex frequently depends on the axis of polarity of
the dividing cell. In those contexts, the symmetry breaking event
that polarizes a cell and gives the polarity axis its orientation also
determines the orientation of the subsequent division. Micro-
tubules can act in many contexts such as a signal biasing with
which orientation cells polarize (reviewed in ref. 9), but a variety
of other polarizing cues exist that polarize cells and orient their
division.

Embryonic neural stem cells (neuroblasts (NBs)) in Drosophila
for instance can use spindle microtubules to deliver components
of the microtubule anchoring machinery to the cortex10. These
cells can also read extrinsic cues, orienting their division per-
pendicular to the overlying epithelium11. This is mediated by G-
protein coupled receptor signalling recruiting factors directly
orienting the spindle towards this signal12. In other contexts, E-
cadherin (E-Cad) rich cell–cell adhesion sites provide spatial
information to orient the mitotic spindle13–15. In the case of
Caenorhabditis elegans, the site of sperm entry defines
anterior–posterior polarity and the orientation of the first divi-
sion16. The midbody resulting from this division is further used
as a spatial cue orienting the subsequent P1 cell division17.
Cytokinesis is also linked to division orientation control in
budding yeast, where the orientation of future divisions is biased
by a landmark at the site of abscission18. Therefore, positional
landmarks linked to cytokinesis can control the orientation of cell
division.

An ideal system to study mechanisms that orient cell division
are the highly proliferative NBs of the Drosophila larva that divide
over many cell cycles with very little deviation in the orientation
of division between different cycles. The mechanisms controlling
this process are only partially understood. In NBs, cortical
polarity is established by the activity of the Par complex19–23. The
Pins (Drosophila homologue of LGN) complex24–28 then couples
the orientation of the mitotic spindle with apico-basal polarity,
such that both are aligned. Interestingly, after each division the
polarized localization of both complexes on the NB cortex is lost
but reforms with the same orientation in the next mitosis29,30.
Contrary to embryonic NBs11, this occurs regardless of whether
larval NBs reside within the brain or are in isolation in primary
culture31,32. Currently, this process is believed to occur through
the apically localized centrosome and microtubules, which act as
cell intrinsic polarizing cues33. However, disruption of these cues,
either through depolymerization of microtubules or mutation in
sas4 leading to loss of centrioles34, only results in a partial defect
of division orientation maintenance32. This suggests that other
polarizing cues contribute in parallel to maintain the orientation
of the axis of NB division.

Given that cytokinesis-related cues can direct spindle orienta-
tion in other cell types, we hypothesized that NBs could use a
spatial cue provided by their last-born daughter cell to orient cell

division in the subsequent mitosis. Indeed, we found that NBs
align their divisions with the position of the last-born daughter
cell (called ganglion mother cell (GMC)). Disruption of the
integrity of the NB/GMC interface, either through laser ablation
or by depletion of proteins specifically localizing to this interface,
including the midbody and midbody-associated structures, per-
turbs NB division orientation memory while it does not affect
alignment of the mitotic spindle with cortical polarity. Thus we
propose that the last-born GMC is an extrinsic polarizing cue for
larval brain NBs in Drosophila orienting their axis of polarity and
consequently division. Finally, our results suggest a physiological
function for division axis maintenance in this context: preventing
NBs from generating daughter cells between themselves and
surrounding cortex glia maximizes NB/cortex glia contact surface.

Results
The division axis of NBs follows GMC movements. To test our
hypothesis that the orientation of NB division is under the
influence of extrinsic cues provided by their daughter cells, we
analysed the relationship of the orientation of NB division with
the position of the last-born daughter cell (GMC). We used
confocal imaging of whole mount brains to capture the entire
volume of NBs over several rounds of divisions (Supplementary
Movie 1) and developed a method to measure the deviation of
their division axis in three dimension (3D) using the character-
istic shape of telophase NBs as reference (Fig. 1a and Supple-
mentary Fig. 1a). Using this method, we reproduced the previous
observation32 that maintenance of the division axis of NBs is
affected, but not abolished, in sas4 mutants (Supplementary
Fig. 1b-d). This partial maintenance of the division axis upon loss
of the sas4-dependent polarity cue is consistent with the possible
continued activity of an additional spatial cue.

As previously reported32, the division axis of control NBs is not
perfectly maintained between cell cycles (angle α, Fig. 1b, c). We
next reasoned that, if the GMC provides a cue maintaining the
division axis, the division axis of NBs should align with the
position of the GMC when NBs polarize, i.e. when they start
rounding at the onset of mitosis (Supplementary Fig. 1e,
Supplementary Movie 2). Thus we tracked the position of the
last-born GMC until NBs started rounding up, at which point we
defined a NB–GMC axis (Fig. 1b, magenta arrow). Comparing
this axis to the following division axis (Fig. 1b, green arrow)
revealed that the position of the last-born GMC at the onset of
NB rounding predicted significantly better the orientation of the
subsequent division than the previous axis of division (angle β,
Fig. 1c).

We further observed that, in cases for which the division axis
was most highly misaligned with the previous one, the last-born
GMC moved away from its initial birthplace, and the NB from
which it derived re-aligned its subsequent division with the new
position of that GMC (Fig. 1a). Importantly, this displacement of
the GMC and the subsequent realignment of the division axis was
not caused by a rotation of the entire brain nor of the NB-
progeny cluster as only the last-born GMC and not its
neighbouring cells significantly changed position (Supplementary
Fig. 1f-h). Whether such GMC movements are physiologically
relevant or experimentally induced is unclear. Nonetheless, our
observation that NB divisions realign with displaced GMCs is
consistent with the idea that the GMC is a spatial cue that orients
NB divisions.

Last-born GMC ablation affects NB division orientation. If the
last-born GMC controls NB division orientation, ablation should
affect the maintenance of the axis of NB division (measured
above as “angle α”). We tested this idea by observing a NB
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division and destroying the GMC born from this division by
biphotonic laser-mediated ablation. We then observed the fol-
lowing division and measured its alignment with the previous
one. NBs immediately deformed toward the destroyed GMC
following its ablation (Supplementary Fig. 2, Supplementary
Movie 3). Therefore, we were concerned that this deformation
and cellular debris generated close to the NB together with
damage caused by the laser could affect the maintenance of the
division axis and bias our analysis. To account for such effects, we
performed “control ablations” by ablating other cells in contact
with the NB, away from the last-born GMC (Fig. 2a, b).

Control ablations also resulted in NB deformation towards the
destroyed cell (Supplementary Fig. 2, Supplementary Movie 4).
However, they did not affect the maintenance of NB division
orientation. In contrast, ablation of the last-born GMC
significantly affected this process (Fig. 2c, Supplementary
Movie 5). Importantly, NBs that misoriented their division
following ablation of the last-born GMC and then divided again
aligned this third division with the previous, misoriented division
(Fig. 2d–f). Thus ablation of the last-born GMC results in a
transient defect in the orientation of the NB division axis that is
restored upon the generation of a new GMC. This is further
consistent with our (Fig. 1) and a previous observation32. Finally,
we investigated whether older GMCs also participate in division
axis maintenance by targeting the GMC generated one cell cycle
earlier rather than the last-born GMC. Ablation of the older
GMC led to a small but non-significant increase of the division

axis deviation compared to control cuts (targeting a cell away
from the last-born GMC, Fig. 2c), which might be attributed to
indirectly affecting the last-born GMC via generation of cellular
debris, direct damages by the laser and deformation of
neighbouring cells toward the ablated cell. These results suggest
a prominent role for the last-born GMC over the entire GMC
cluster produced.

Last-born GMC ablation affects NB polarity axis orientation.
In NBs, the spindle is aligned with the apico-basal polarity axis.
Altered division orientation caused by GMC ablation could
therefore be the result of misalignment of the mitotic spindle with
the apico-basal polarity axis. Alternatively, the orientation of the
polarity axis itself could be affected. We tested this by repeating
GMC ablation experiments in NBs expressing the apical polarity
marker Baz::GFP, together with the centriole marker Asl::YFP to
visualize the mitotic spindle poles. Following GMC ablation, every
case of division axis misalignment (n= 7 cases with deviation
>45°) displayed a misplaced apical crescent with which the spindle
properly aligned (Fig. 3a, b). Thus defective division axis main-
tenance upon GMC ablation results from altered orientation of the
polarity axis and not from defects in downstream mechanisms
related to spindle anchoring. This would be consistent with the
GMC being a polarizing cue for larval brain NBs.

Finally, we tested whether GMC-dependent division axis
maintenance acts in the same pathway as the previously reported
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Fig. 1 NBs align their division axis with GMC position. a Two successive divisions of a larval NB expressing the membrane marker PH::RFP. Top row: no
obvious movement of the last-born GMC is observed following the first division; bottom row: last-born GMC movement. Arrows: division axis. Asterisk:
last-born GMC. Dashed line: NB/GMC interface at prophase. Scale bar: 5 µm. b Angles measured in the previous panel and quantified in the next panel.
Angle α corresponds to the alignment of the second division (green arrow) with the previous one (blue arrow). Angle β corresponds to the alignment of the
second division (green arrow) with an axis (magenta arrow) defined by the GMC (blue asterisk)/NB interface (magenta line) at prophase. c Distribution of
the angles described in the previous panel: alignment of the second division axis with the previous division axis (angle α, 24 ± 15° (standard deviation), n=
37) and with the GMC (angle β, 14 ± 7°, n= 52) from one experiment In this boxplot and every following one: cross: outlier; grey circle: average; red dots:
individual measurements; centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range. P values displayed over boxplots
were calculated using a non-parametric two-tailed Mann–Whitney U Test in this figure and all subsequent ones
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Fig. 2 GMC ablation disrupts division axis maintenance. a Two successive divisions of NBs expressing worniu-GAL4-driven PH::GFP, the second division
following the control ablation (upper panels) of a NB-neighbouring cell (yellow asterisk) away from the last-born GMC (blue asterisk) or following GMC
ablation (lower panels) are shown. The ablation takes place between the two frames separated by a lightning symbol. Arrows: division axis. b Schematic of
the ablations and angle measurements. c Deviation of the division axis following no ablation (Average angle: 18 ± 14°, n= 35), control ablation (23 ± 16°,
n= 27), last-born GMC ablation (36 ± 20°, n= 35; also shown in Figs. 3c and 5c) or older GMC ablation (27 ± 16°, n= 26). Data from ten independent
experiments. For examples of control or last-born GMC ablations resulting in a high misalignment of the second division axis, see Supplementary Movies 6
and 7. d Three successive divisions of NBs expressing worniu-GAL4-driven PH::GFP. The ablation takes place between the two frames separated by a
lightning symbol. Blue asterisk: GMC prior to ablation, green asterisk: new last-born GMC. Arrows: division axis. e Schematic of the angles α measured
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intrinsic polarity cue for larval NBs32. We reasoned that, in this
case, the division axis maintenance defect upon disruption of the
intrinsic polarity cue division axis in sas4 mutants should not
increase upon ablation of the last-born GMC. On the contrary,
the division axis deviation of sas4 mutant NBs increased
significantly upon GMC ablation (Fig. 3c). This supports the
possibility that the GMC is an extrinsic polarizing cue contribut-
ing to NB division axis maintenance in parallel to the intrinsic,
sas4-dependent cues.

The NB/last-born GMC interface has specific features. We next
sought to understand the molecular mechanism for the ability of
the GMC to affect NB division orientation. We hypothesized that
the interface between the NB and its latest daughter cell was likely
to mediate this function and that this interface might have spe-
cific characteristics distinguishing it from contacts between the
NB and older daughter cells. Certain modes of divisions in
budding yeast are oriented by a “division scar”18 as a landmark
guiding the orientation of the next division. We hypothesized that
NBs could use a similar strategy, involving the midbody as a

polarizing cue, and tracing the midbody marker Pavarotti-GFP35,
we found that the midbody was present at the newly formed NB/
GMC interface from cytokinesis onward and that the midbody
from the previous division was inherited by the GMC (Fig. 4a, 34/
51 cell cycles). Thus in most cases the NB cortex harbours one
midbody marking the position of the last-born GMC. However,
tracing the fate of the midbody over several divisions in multiple
NBs revealed that in some cases the midbody was internalized by
the NB during interphase (Supplementary Fig. 3a, 17/51 cell
cycles). Comparing the deviations in division orientation between
NBs that internalized the midbody and those that did not
revealed no significant difference (Supplementary Fig. 3b).
Therefore, the midbody itself is unlikely to serve as a landmark
directly read by the NB to maintain its division orientation.

However, we noticed other specific features of the NB/GMC
interface in the vicinity of the midbody. NBs expressing
membrane markers such as the GTPase Rap136 or the PI(4,5)
P2-specific PH domain of phospholipase Cδ fused to GFP (PH::
GFP, {Claret:2014ig}) (Supplementary Movie 8) displayed
structures resembling long tubules largely restricted to and
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expanding from the NB/GMC interface into the NB cytoplasm
(Fig. 4b). They systematically formed around the Septin2::GFP-
labelled midbody (Fig. 4c) within the 5 min following closure of
the cytokinetic furrow and were maintained throughout inter-
phase, until they disappeared when NBs entered prophase
(Fig. 4b). Consistent with the possibility that tubules may
participate to orienting NBs, they were maintained at the NB/
GMC interface in the cases when GMCs migrated away from
their birthplace (Fig. 1a, 01h44m) and the cases when the
midbody was internalized (Supplementary Fig. 3a, 01h01m).
They were, however, also maintained following ablation of the
last-born GMC (Fig. 2b, 00h49m, 00h59m).

Further examination of the NB/GMC interface revealed that it
was rich in F-Actin (Fig. 4d). This prompted us to examine the

subcellular localization of several actin regulators using endo-
genously expressed fluorescent protein traps. We found that Flare
(actin depolymerizing factor,37), Canoe (Afadin,38) and Cindr39

(Supplementary Movie 9) were present at the NB/GMC interface
(Fig. 4d).

We further reasoned that adhesion molecules could be
involved in division orientation maintenance and might be
enriched at the NB/GMC interface. We focussed on the adhesion
molecule E-Cad, as it is involved in orienting mitosis in the fly
sensory organ precursor lineage13, is expressed in NBs and their
lineage and has been reported to be enriched between NBs and
their daughter cells40,41. However, neither E-Cad nor its binding
partner β-Catenin were restricted to the interface of NBs and the
last-born GMC compared to interfaces between NBs and older
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± 27°, n= 29) and following GMC ablation in NBs expressing worniu-Gal4-driven Sep1 RNAi (37 ± 19°, n= 21). Data from three independent experiments.
d Graphical summary of the findings. Top row: the NB/last-born GMC interface, distinguishable from other interfaces by the presence of the midbody and
actin-rich plasma membrane extensions (magenta), biases through an unknown mechanism (magenta arrows) the apical polarization (green crescent) of
NBs as they round up in mitosis. The mitotic spindle aligns with this crescent, resulting in division axis maintenance. Bottom row: disruption of this
mechanism leads to misplaced apical polarization (with which the mitotic spindle still properly aligns) resulting in defective division axis maintenance
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GMCs (Supplementary Fig. 4a-b). In conclusion, specific
characteristics distinguish the interface between the NB and its
last-born daughter cell: the presence of a midbody, plasma
membrane extensions, and an accumulation of actin and actin
regulators.

Molecules involved in NB division orientation maintenance.
We next used NB and NB progeny-specific RNAi to test whether
components of the midbody and the NB/GMC interface are
involved in orienting the axis of NB divisions. Efficient depletion
of E-Cad by RNAi (Supplementary Fig. 4b) did not result in
significant division orientation defects of central brain NBs
(Supplementary Fig. 4c). Therefore, despite being involved in
controlling niche position of mushroom body NBs42, E-Cad is
not critical for NB division orientation maintenance in the central
larval brain.

Surprisingly, although midbody internalization had no effect
on division axis maintenance (Supplementary Fig. 3), efficient
depletion of the midbody components Septin 1 (Supplementary
Fig. 4d-e) as well as RNAi against Septin 2 led to significant
division orientation defects (Fig. 5a). Septins are required for
cytokinesis in certain tissues43 raising the possibility that
cytokinesis failure indirectly disrupts division axis orientation.
However, multinucleation in Septin1- and Septin2-depleted NBs
was never observed (Supplementary Fig. 4). This is either because
depletion of Septins was only partial (Supplementary Fig. 4d, e) or
because Septins are not required for cytokinesis in NBs, as it is the
case in other contexts44,45. Furthermore, efficient depletion of
Flare and Cindr (Supplementary Fig. 4f, g) resulted in a
significant increase of the division axis deviations (Fig. 5a). This
prompted to express RNAi against a Cindr interactor, the
transmembrane immunoglobulin Roughest (Rst,46), and against
its adaptor Dreadlock (Dock47), depletion of all of which also
affected division axis maintenance (Fig. 5a).

Like misaligned divisions following ablation of the GMC,
misaligned divisions caused by RNAi against Flare, Cindr, Rst
and Dock were associated with misplaced apical crescents rather
than spindle–cortical polarity alignment problems (Fig. 5b,
Supplementary Movie 10). We further reasoned that misplaced
apical crescents, instead of being caused by the disruption of an
additional polarizing cue relying on the NB/GMC interface, could
be caused by an abnormally mobile apical centrosome directing
polarization at the wrong place (Supplementary Fig. 4h).
However, although we did occasionally observe apical centrosome
detachment during interphase, this occurred at the same

frequency in control and RNAi-expressing NBs (control: 4/68;
Sep1 RNAi: 4/47; Sep2 RNAi: 2/53; Cindr RNAi: 6/86; Dock
RNAi: 7/73; Rst RNAi: 2/53; Flare RNAi: 6/55). Furthermore,
precise measurements of the apical centrosome position suggest
that, at least in Flare-depleted NBs, the apical centrosome
position when NBs polarize does not correspond to the apical
crescent position in metaphase (Supplementary Fig. 4h-j).
Therefore, misplaced Baz crescents upon RNAi depletion of
these components are unlikely to be caused by an incorrectly
positioned apical centrosome.

Finally, we hypothesized that, if depleting components of the
NB/GMC interface disrupts the role of the GMC as a polarizing
cue, GMC ablation together with depleting these components
should not further increase the resulting deviations of the
orientation of NB division. Consistent with this idea, GMC
ablation in Sep1-depleted NBs did not significantly increase
division axis deviations when compared to Sep1-depleted NB
alone or control NBs on which GMC ablations were performed
(Fig. 5c). Based on these results, we propose that the role of the
GMC in maintaining the division axis of NBs is mediated by
proteins specifically localizing to the newly formed interface
between the NB and its last-born daughter cell (Fig. 5d).

Division orientation changes reduce NB/glia contact area. In
the larval brain, NBs and their progeny are ensheathed by glial
cells40 that provide proliferative signals48 and protection against
starvation49 and oxidative stress50. We reasoned that, by placing
daughter cells between the NB and their glial cell niche, inaccu-
rate maintenance of division orientation could isolate the NBs
from glial cells (Fig. 6a). Indeed, we measured that a significantly
smaller portion of the NB surface contacted the ensheathing
cortex glial cell in Cindr-depleted NBs (71 ± 9%) compared to
controls (79 ± 5%, Fig. 6b, c). We further examined whether the
reduction of this contact area may affect the niche’s ability to
protect NBs against oxidative stress. Consistent with this possi-
bility, we observed that the proliferation of Cindr-depleted NBs,
but not of controls, was significantly affected by experimentally
induced oxidative stress (Supplementary Fig. 5A-F).

Discussion
Deciphering the signals that provide positional information is a
central issue in understanding how cell divisions are oriented.
Here we addressed this question in the highly proliferative NBs in
the Drosophila larval brain, which maintain their division axis
from one cell cycle to the next in part by using an apical
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microtubule network as a spatial cue to specify their apico-basal
polarity axis and consequently the orientation of mitosis32. We
sought to understand why NBs only partially fail to maintain
their division axis upon loss of this intrinsic polarizing cues and
found out that the last-born daughter cell of NBs participates to
their division axis maintenance. Our results also shed light on
some aspects of the physiological importance of division axis
maintenance in larval NBs, which has remained elusive. Control
of NB division orientation may provide a means to maximize NB/
cortex glia surface area to allow optimum protection against
environmental stresses by the cortex glia50. Under normal con-
ditions, about 80% of the surface of NBs is in direct contact with a
cortex glia and NBs with partially defective division axis main-
tenance display reduced contact with cortex glia (Fig. 6). This
most likely directly results from NBs producing progeny between
themselves and the cortex glia when the last-born daughter cell
derived cue that positions normally the apico-basal polarity axis is
damaged. This seems to be important for the protective function
of these glial cells on NB proliferation under stress conditions.
Indeed, NBs with reduced surface contact to cortex glia appear to
be less well protected by glial cells, as we observe a significant
increase of sensitivity to oxidative stress (Supplementary Fig. 5)
using an established assay50. However, despite this reduction
being statistically significant, we measured only a 9% reduction in
NB/cortex glia contact area. On a normal diet, addition of the
oxidant tert-butyl hydroperoxide (tbh) results in a 14% drop in
NB proliferation when the formation of lipid droplets mediating
this protection is prevented50. It is therefore surprising that in our
experiments reducing the NB/cortex glia contact area by only
~9% in Cindr-depleted NB (Fig. 6) is already accompanied by a
similar drop in proliferation upon tbh treatment (Supplementary
Fig. 5). Therefore, although this decrease may directly result from
interfering with the protection provided by cortex glia, we cannot
rule out other unrelated functions of Cindr in protecting NBs
against the effect of tbh.

We initially hypothesized that the last-born GMC could act as
an additional, extrinsic cue maintaining NB division orientation.
A number of our observations are consistent with this possibility:
we observed that, upon (perhaps artefactual) last-born GMC
movements, NBs realign their division axis toward this GMC
(Fig. 1); ablation of the last-born GMC (Figs. 2 and 3) and
depletion of proteins specifically observed at the last-born GMC/
NB interface (Fig. 5) affect division axis maintenance by mis-
orienting the apico-basal polarity of NBs. We cannot exclude that
the entire NB and any intrinsic spatial cue that it carries simply
rotate upon migration or ablation of the last-born GMC or
depletion of proteins specifically observed at the last-born GMC/
NB interface. Thus the last-born GMC may participate in division
axis maintenance by preventing NB rotation. This function could
be mediated by specific adhesive contacts at the interface with the
NB, plausible given the numerous specific characteristics that we
have observed at that interface (Fig. 4). In particular, the midbody
carried by this interface, although not likely to act itself as a stable
physical link given its possible ability to migrate within the fluid
mosaic of the plasma membrane51 and the fact that its inter-
nalization does not affect division orientation maintenance
(Supplementary Fig. 3), may be able to organize specific adhesive
contacts at the NB/last-born GMC interface.

An alternative hypothesis is that the last-born GMC provides a
cue that more directly functions in specifying the orientation of
the apico-basal polarity axis by polarizing Baz, which functions
upstream of NB division orientation control. Consistently, despite
affecting division orientation maintenance, neither GMC ablation
nor RNAi of Cindr disrupt alignment of the mitotic spindle with
the polarity axis (Figs. 3a and 5b). In this case, the molecular
mechanism through which a positional information provided by

the last-born GMC is transduced to the NB polarization
machinery remains to be determined. Although bearing simila-
rities with division axis maintenance in budding yeasts, relying on
a Septin-rich cytokinesis remnant18, the midbody of NBs is
unlikely to directly control polarization as midbody internaliza-
tion does not affect division axis maintenance (Supplementary
Fig. 3). Instead, we propose that the midbody may organize
various other specific components of the last-born GMC/NB
interface that in turn may directly control NB polarization. This
could be the case of cell–cell contacts organized by the midbody,
consistent with the involvement of an adhesion molecule such as
Roughest (Fig. 5a), whose mammalian orthologue physically
interacts with Septins52, and the fact that GMC ablation, although
not directly targeting the interface, affects division axis main-
tenance. Another promising candidate potentially controlling NB
polarity are the plasma membrane tubules probably organized by
the midbody, given their physical origin (the midbody) and the
timing (immediately after cytokinesis) of their appearance (Fig. 4,
Supplementary Movie 8). Interestingly, a physical interaction was
observed between Septins and the mammalian orthologue of
Cindr52, found enriched at the tubules (Fig. 4) and involved in
division axis maintenance (Fig. 5). Tubules function might be
linked to the integrity of the last-born GMC/NB interface, which
itself probably depends on the integrity of the last-born GMC.
While these tubules do not disappear upon GMC ablation
(Fig. 2d), it would be of particular interest to monitor whether
tubules morphology, dynamics or the enrichment of Flare and
Cindr are affected by ablation of the last-born daughter cell.

Interestingly, proteins that we found involved in division axis
maintenance were described to interact with polarity complexes
in other contexts: Septins genetically interact with Baz during
Drosophila embryogenesis53, and the mammalian orthologues of
Roughest regulate podocyte polarity by physically interacting with
Par-354. However, both Septins and Roughest localize to the basal
pole of NBs, whereas Baz polarizes apically. Therefore, how could
a cue received at the basal pole direct polarization of Baz, at the
opposite apical pole of the NB? In the C. elegans zygote, the sperm
entry point acts as a cue inducing an actomyosin flow16 estab-
lishing Par complex polarity at the opposite end of the cell (see
ref. 55 for a review). Septins56, Cindr, Roughest39 and Flare37 can
be linked in one way or another to the regulation of actomyosin,
and at least the maintenance of Baz localization in mitotic NBs is
also actin-dependent57. Intracellular long-range control of
polarization has been further observed in eight-cell stage mouse
blastomeres, where cell–cell contacts induce apical polarization at
the opposite end of the cell58. A promising lead for future work is
the possible involvement of actomyosin-dependent mechanical
forces in such long-range control of polarity in NBs. Indeed,
tensions participate in polarization in the C. elegans zygote59,60,
were proposed to mediate polarization of eight-cell stage mouse
blastomeres61 and maintain polarity in migrating neutrophils62.

Methods
Fly stocks and genetics. Flies were reared on standard corn meal food at 25 °C,
except for RNAi-expressing larvae and their corresponding controls (Fig. 5 Sup-
plementary Fig. 4), which were placed at 30 °C from the L1 larval stage to the
L3 stage, at which point they were dissected. As RNAi was driven using the
Worniu-GAL4 driver, which is not expressed in every NBs, UAS-nls::BFP was used
as a GAL4 reporter to identify and exclude from the analysis NBs not expressing
GAL4. For the genotypes of the animals used in each experiment, see Supple-
mentary Table 1. For the origins of the stocks used, see Supplementary Table 2.

Live imaging. Every reference to Schneider’s medium corresponds to glucose-
supplemented (1 g l−1) Schneider’s medium (SLS-04–351Q). Live imaging was
performed as described63. Entire brains were dissected from early L3 larvae (still
crawling inside the food) in Schneider’s medium and isolated from the surrounding
imaginal discs. Particular care was taken to avoid pulling on brains at any time
during the dissection and damaged brains were discarded. Isolated brains were

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06276-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3745 | DOI: 10.1038/s41467-018-06276-0 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


transferred to a drop of fibrinogen dissolved in Schneider’s medium (50 mgml−1)
on a 25 mm Glass bottom dish (WPI), which was then clotted by addition of
thrombin (100 Uml−1, Sigma T7513). Clots were then covered in Schneider’s
medium (approximately 750 µl spread over the entire surface of the glass).

RNAi-expressing brains and their associated controls (Fig. 5, Supplementary
Fig. 4) were then imaged on a LEICA SP8 confocal microscope (LEICA) equipped
with a ×63 NA 1.2 water immersion objective lens. Stacks of 25–30 optical z-
section separated by 0.8 µm, covering a 132 × 132 × 20–24 µm3 region of the
surface of the antero-ventral central brain were acquired every 210 s for 2 h 30 min
to image Asl::YFP, Baz::GFP and PH::RFP, after which a final stack also imaged the
GAL4 reporter Nls::BFP.

For laser ablations (Figs. 2, 3, 5c, Supplementary Fig. 2), brains were imaged on
a Zeiss 710 confocal microscope equipped with a ×63 oil immersion objective lens.
Stacks of 16 optical z-section separated by 1.2 µm, covering a 75 × 75 × 18 µm3

region of the surface of the antero-ventral central brain were acquired every 210 s
for 2.5–3 h.

Laser ablation. Laser ablations were performed on a 710 confocal microscope
(Zeiss) equipped with a ×63 oil immersion objective lens and a two-photon tunable
Chameleon from Coherent set to 800 nm, using the fluorescence recovery after
photobleaching module of the Zen software. Settings were as follows: laser intensity
25–32% (empirically adjusted depending on the depth of the targeted area within
the tissue; targeted area 1.4 × 1.4 µm2; 15 iterations.

Image processing and angle measurement. Data were processed and analysed
using ImageJ64. A 0.8 × 0.8 × 0.8 pixel-wide 3D Gaussian blur was applied to every
image. For better visualization, a 0.75 gamma filter was applied to the pictures
displayed in Fig. 4 and the associated movies.

Angle measurement. The 3D vectors corresponding to the division axis were
defined by the 3D coordinates of the apical and basal centrosome at metaphase
when a centrosome marker was available. When only a membrane marker was
available, the 3D vectors were defined by the positions of the apical and the basal
pole at telophase in three steps detailed in Supplementary Fig. 1a: (1) a manually
determined axis bisecting the NB along its long axis is used to orthogonally slice a
3D stack covering the entire NB volume; (2) this orthogonal slice is used to
determine the z coordinates of the apical and basal poles; (3) these z coordinates
are used on the corresponding slices of the 3D stack to determine the x and y
coordinates of the basal and apical poles.

The angle (α) between two 3D vectors was calculated using the formula:

α ¼ arccos
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xA1
being for example the x coordinate of the apical centrosome during the first

division and yB2
being for example the y coordinate of the basal centrosome during

the second division.

NB/cortex glia contact measurements. High-resolution confocal stacks of PH::
GFP-expressing, Zyd-immunostained NBs were acquired. The entire surface of
NBs and the associated cortex glia were manually segmented, based, respectively,
on the PH::GFP and the Zyd signals. The corresponding surfaces were then
measured using the Isosurface function of the ImageJ BoneJ plugin65.

Proliferation assay. Eggs were laid for 1 h in fly cages containing standard
medium and yeast paste, in which larvae developed until 71 h after egg laying, after
which they were transferred for 21 h to a 50% phosphate-buffered saline (PBS),
50% standard food mixture, supplemented with 0.2 mM 5-ethynyl-2′-deoxyuridine
(EdU) and 0 or 15 mM tbh (Sigma). Their brains were then dissected and fixed for
20 min in 4% formaldehyde (Sigma), permeabilized in PBS–Triton 0.1% (PBT)
overnight at 4 °C, rinsed once in PBS 0.5% bovine serum albumin (BSA), incubated
45 min in a Click-iT EdU Alexa Fluor 647 reaction cocktail (Thermo Fisher), rinsed
once in PBS 0.5% BSA, stained for 4,6-diamidino-2-phenylindole, washed 3 times
in PBS for 10 min, transferred to a 50% glycerol solution and mounted in a Vec-
tashield mounting medium (Vector Laboratories). Mosaic tiles covering the entire
volume of the brains were acquired on a LEICA SP8 confocal microscope, using

linear z-compensation to keep a high signal-to-noise ratio deeper in the tissue. The
EdU signal being highly heterogenous between different brains and between dif-
ferent cells of the same brains, we trained the Pixel Classification workflow of
Ilastik66 to segment the EdU signal on small 3D sub-regions of various brains and
then processed our entire 3D data using this training to generate signal probability
maps, which were reliably segmented into binary masks by applying a 0.5
threshold. The resulting binary data were ultimately used to measure the volume of
incorporated EdU, which was normalized to the precise time of exposure to EdU
(between the transfer of larvae to EdU-containing medium to fixation, ranging
from 20 to 21 h). See also (Supplementary Fig. 5).

Statistical analysis. P values displayed over boxplots were calculated using a non-
parametric two-tailed Mann–Whitney U test. The numbers displayed in boxplots
correspond to measurements in individual NBs. The number of animals used in
each experimental data set is as follows: Fig. 1: 2. Fig. 2a–c: no ablation: 10; control
ablation: 7; GMC ablation: 11. Fig. 2d–f: 4. Fig. 3a: 2. Fig. 3c: GMC ablation: 11;
sas4−: 7; GMC ablation in sas4−: 8. Fig. 4a: 2. Fig. 4b: 3. Fig. 4c: 2. Fig. 4d Utrophin:
2; Canoe: 5; Flare: 6; Cindr: 6. Fig. 5a control: 4; Sep1 RNAi: 4; Sep2 RNAi: 2; Cindr
RNAi: 3; Dock RNAi: 3; Rst RNAi: 2; Flare RNAi: 3. Fig. 5b: 3. Fig. 5c GMC
ablation: 11; Sep1 RNAi: 4; GMC ablation in Sep1 RNAi: 4. Fig. 6b, c: control: 3;
Cindr RNAi: 4; Supplementary Fig. 1 b-d: control: 10; sas4−: 7. Supplementary
Fig. 1e: 3. Supplementary Fig. 1f: 2. Supplementary Fig. 2 GMC ablation: 10;
control ablation: 7. Supplementary Fig. 3a, b: 2. Supplementary Fig. 4a: 2. Sup-
plementary Fig. 4b control: 2; E-Cad RNAi: 2. Supplementary Fig. 4c control: 4; E-
Cad RNAi: 3. Supplementary Fig. 4d: 2. Supplementary Fig. 4e: 1. Supplementary
Fig. 4f Cindr RNAi: 1; control: 1. Supplementary Fig. 4g Flare RNAi: 2; control: 3.
Supplementary Fig. 4h control: 4; Flare RNAi: 3. Supplementary Fig. 5: control 0
mM tbh: 14; control 15 mM tbh: 14; Cindr RNAi 0 mM tbh: 10; Cindr RNAi 15
mM tbh: 12.

Immunostainings. For the β-Cat (Supplementary Fig. 3b) and Zyd (Fig. 6)
immunostainings, brains were dissected in PBS, fixed for 20 min in 4% for-
maldehyde (Sigma), permeabilized in PBT for 1 h, incubated in a Rabbit-anti-β-
Catcentral antibody67 diluted 1:200 in PBT or a Rabbit-anti-Zyd antibody68 diluted
1:1000 in PBT for 2 h, rinsed 3 times in PBT, washed 3 times in PBT for 10 min,
incubated in a secondary Donkey-anti-Rabbit antibody coupled to Alexa 594
(Thermo Fisher) diluted 1:1000 in PBT for 1 h, rinsed 3 times in PBS, washed 3
times in PBS for 10 min, transferred to a 50% glycerol solution and mounted in a
Vectashield mounting medium (Vector Laboratories). Every step was performed at
room temperature.

Data availability
The data sets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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