35 research outputs found

    The obligate intracellular bacterium Orientia tsutsugamushi differentiates into a developmentally distinct extracellular state

    Get PDF
    Orientia tsutsugamushi (Ot) is an obligate intracellular bacterium in the family Rickettsiaceae that causes scrub typhus, a severe mite-borne human disease. Its mechanism of cell exit is unusual amongst Rickettsiaceae, as Ot buds off the surface of infected cells enveloped in plasma membrane. Here, we show that Ot bacteria that have budded out of host cells are in a distinct developmental stage compared with intracellular bacteria. We refer to these two stages as intracellular and extracellular bacteria (IB and EB, respectively). These two forms differ in physical properties: IB is both round and elongated, and EB is round. Additionally, IB has higher levels of peptidoglycan and is physically robust compared with EB. The two bacterial forms differentially express proteins involved in bacterial physiology and host-pathogen interactions, specifically those involved in bacterial dormancy and stress response, and outer membrane autotransporter proteins ScaA and ScaC. Whilst both populations are infectious, entry of IB Ot is sensitive to inhibitors of both clathrin-mediated endocytosis and macropinocytosis, whereas entry of EB Ot is only sensitive to a macropinocytosis inhibitor. Our identification and detailed characterization of two developmental forms of Ot significantly advances our understanding of the intracellular lifecycle of an important human pathogen

    Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis.

    Get PDF
    The cell cortex is essential to maintain animal cell shape, and contractile forces generated within it by nonmuscle myosin II (NMY-2) drive cellular morphogenetic processes such as cytokinesis. The role of actin cross-linking proteins in cortical dynamics is still incompletely understood. Here, we show that the evolutionarily conserved actin bundling/cross-linking protein plastin is instrumental for the generation of potent cortical actomyosin contractility in the Caenorhabditis elegans zygote. PLST-1 was enriched in contractile structures and was required for effective coalescence of NMY-2 filaments into large contractile foci and for long-range coordinated contractility in the cortex. In the absence of PLST-1, polarization was compromised, cytokinesis was delayed or failed, and 50% of embryos died during development. Moreover, mathematical modeling showed that an optimal amount of bundling agents enhanced the ability of a network to contract. We propose that by increasing the connectivity of the F-actin meshwork, plastin enables the cortex to generate stronger and more coordinated forces to accomplish cellular morphogenesis

    The utility of an AMR dictionary as an educational tool to improve public understanding of antimicrobial resistance

    Get PDF
    Background: Communicating about antimicrobial resistance (AMR) to the public is challenging.   Methods: We developed a dictionary of terms commonly used to communicate about AMR. For each term, we developed learning points to explain AMR and related concepts in plain language.  We conducted a pilot evaluation in 374 high school students in Ubon Ratchathani, Thailand. In three 50-minute sessions, students were asked to answer five true/false questions using a paper-based questionnaire. The first session assessed their understanding of AMR at baseline, the second after searching the internet, and the third after the provision of the printed AMR dictionary and its web address.    Results: We developed the AMR dictionary as a web-based application (www.amrdictionary.net). The Thai version of the AMR dictionary included 35 terms and associated learning points, seven figures displaying posters promoting AMR awareness in Thailand, and 66 recommended online videos. In the pretest, the proportion of correct responses to each question ranged from 10% to 57%; 10% of the students correctly answered that antibiotics cannot kill viruses and 57% correctly answered that unnecessary use of antibiotics makes them ineffective. After the internet searches, the proportions of correct answers increased, ranging from 62% to 89% (all p&lt;0.001). After providing the AMR dictionary, the proportions of correct answers increased further, ranging from 79% to 89% for three questions (p&lt;0.001), and did not change for one question (p=0.15). Correct responses as to whether taking antibiotics often has side-effects such as diarrhoea reduced from 85% to 74% (p&lt;0.001). The dictionary was revised based on the findings and comments received. Conclusions: Understanding of AMR among Thai high school students is limited. The AMR dictionary can be a useful supportive tool to increase awareness and improve understanding of AMR. Our findings support the need to evaluate the effectiveness of communication tools in the real-world setting.</ns3:p

    A sensitive core region in the structure of glutathione S-transferases.

    No full text
    A variant form of an Anopheles dirus glutathione S-transferase (GST), designated AdGSTD4-4, possesses a single amino acid change of leucine to arginine (Leu-103-Arg). Although residue 103 is outside of the active site, it has major effects on enzymic properties. To investigate these structural effects, site-directed mutagenesis was used to generate mutants by changing the non-polar leucine to alanine, glutamate, isoleucine, methionine, asparagine, or tyrosine. All of the recombinant GSTs showed approximately the same expression level at 25 degrees C. Several of the mutants lacked glutathione (GSH)-binding affinity but were purified by S-hexyl-GSH-based affinity chromatography. However the protein yields (70-fold lower), as well as the GST activity (100-fold lower), of Leu-103-Tyr and Leu-103-Arg purifications were surprisingly low and precluded the performance of kinetic experiments. Size-exclusion chromatography showed that both GSTs Leu-103-Tyr and Leu-103-Arg formed dimers. Using 1-chloro-2,4-dinitrobenzene (CDNB) and GSH substrates to determine kinetic constants it was demonstrated that the other Leu-103 mutants possessed a greater K (m) towards GSH and a differing K (m) towards CDNB. The V (max) ranged from 44.7 to 87.0 micromol/min per mg (wild-type, 44.7 micromol/min per mg). Substrate-specificity studies showed different selectivity properties for each mutant. The structural residue Leu-103 affects the active site through H-bond and van-der-Waal contacts with six active-site residues in the GSH binding site. Changes in this interior core residue appear to disrupt internal packing, which affects active-site residues as well as residues at the subunit-subunit interface. Finally, the data suggest that Leu-103 is noteworthy as a sensitive residue in the GST structure that modulates enzyme activity as well as stability

    Crystallization and preliminary X-ray crystallographic analysis of a highly stable mutant V107A of glutathione transferase from Anopheles dirus in complex with glutathione

    No full text
    A crystal of an engineered glutathione transferase adgstD4-4 (V107A) from A. dirus, which possesses an enzyme stability that is 32 times greater than the wild type, diffracted to 2.47 Å resolution in space group P3221

    Differences in the subunit interface residues of alternatively spliced glutathione transferases affects catalytic and structural functions

    No full text
    GSTs (glutathione transferases) are multifunctional widespread enzymes. Currently there are 13 identified classes within this family. Previously most structural characterization has been reported for mammalian Alpha, Mu and Pi class GSTs. In the present study we characterize two enzymes from the insect-specific Delta class, adGSTD3-3 and adGSTD4-4. These two proteins are alternatively spliced products from the same gene and have very similar tertiary structures. Several major contributions to the dimer interface area can be separated into three regions: conserved electrostatic interactions in region 1, hydrophobic interactions in region 2 and an ionic network in region 3. The four amino acid side chains studied in region 1 interact with each other as a planar rectangle. These interactions are highly conserved among the GST classes, Delta, Sigma and Theta. The hydrophobic residues in region 2 are not only subunit interface residues but also active site residues. Overall these three regions provide important contributions to stabilization and folding of the protein. In addition, decreases in yield as well as catalytic activity changes, suggest that the mutations in these regions can disrupt the active site conformation which decreases binding affinity, alters kinetic constants and alters substrate specificity. Several of these residues have only a slight effect on the initial folding of each subunit but have more influence on the dimerization process as well as impacting upon appropriate active site conformation. The results also suggest that even splicing products from the same gene may have specific features in the subunit interface area that would preclude heterodimerization

    Synthetic Polyketide Enzymology: Platform for Biosynthesis of Antimicrobial Polyketides

    No full text
    Synthetic biology often employs enzymes in the biosynthesis of compounds for purposeful function. Here, we define synthetic enzymology as the application of enzymological principles in synthetic biology and describe its use as an enabling platform in synthetic biology for the purposeful production of compounds of biomedical and commercial importance. In particular, we demonstrated the use of synthetic polyketide enzymology as a means to develop lead polyketide based compounds for antimicrobial therapeutics, as exemplified by the modular coupling of acid:CoA ligases to type III polyketide synthases in the biosynthesis and development of polyketide-based biochemicals. Using wild-type and rationally designed mutants of a type III polyketide synthase isolated from Oryza sativa (OsPKS), we produced a chemically diverse library of novel polyketides and identified two bioactive antimicrobials, 4-hydroxy-6-[(1<i>E</i>)-2-(4-hydroxyphenyl)­ethenyl]-2<i>H</i>-pyran-2-one (bisnoryangonin) and 3,6,7-trihydroxy-2-(4-methoxybenzyl)-4<i>H</i>-1-benzopyran-4,5,8-trione (26OH), respectively, from a screen against a collection of Gram-positive and Gram-negative bacteria. The purification, crystallization, and structural resolution of recombinant OsPKS at 1.93 Å resolution are also reported. Using the described route of synthetic polyketide enzymology, a library of OsPKS mutants was generated as an additional means to increase the diversity of the polyketide product library. We expect the utility of synthetic enzymology to be extended to other classes of biomolecules and translated to various purposeful functions as the field of synthetic biology progresses

    Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen.

    No full text
    Studying emerging or neglected pathogens is often challenging due to insufficient information and absence of genetic tools. Dual RNA-seq provides insights into host-pathogen interactions, and is particularly informative for intracellular organisms. Here we apply dual RNA-seq to Orientia tsutsugamushi (Ot), an obligate intracellular bacterium that causes the vector-borne human disease scrub typhus. Half the Ot genome is composed of repetitive DNA, and there is minimal collinearity in gene order between strains. Integrating RNA-seq, comparative genomics, proteomics, and machine learning to study the transcriptional architecture of Ot, we find evidence for wide-spread post-transcriptional antisense regulation. Comparing the host response to two clinical isolates, we identify distinct immune response networks for each strain, leading to predictions of relative virulence that are validated in a mouse infection model. Thus, dual RNA-seq can provide insight into the biology and host-pathogen interactions of a poorly characterized and genetically intractable organism such as Ot
    corecore