31 research outputs found

    Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells

    Get PDF
    Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+^{+} monocytes, CD16+^{+} neutrophils, and naive CD4+^{+} T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis\textit{cis}-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.This work was predominantly funded by the EU FP7 High Impact Project BLUEPRINT (HEALTH-F5-2011-282510) and the Canadian Institutes of Health Research (CIHR EP1-120608). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 282510 (BLUEPRINT), the European Molecular Biology Laboratory, the Max Planck society, the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208 and Spanish National Bioinformatics Institute (INB-ISCIII) PT13/0001/0021 co-funded by FEDER "“Una Manera de hacer Europa”. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship, M.F. was supported by the BHF Cambridge Centre of Excellence [RE/13/6/30180], K.D. is funded as a HSST trainee by NHS Health Education England, S.E. is supported by a fellowship from La Caixa, V.P. is supported by a FEBS long-term fellowship and N.S.'s research is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510) and the NIHR BRC. The Blood and Transplant Unit (BTRU) in Donor Health and Genomics is part of and funded by the National Institute for Health Research (NIHR) and is a partnership between the University of Cambridge and NHS Blood and Transplant (NHSBT) in collaboration with the University of Oxford and the Wellcome Trust Sanger Institute. The T-cell data was produced by the McGill Epigenomics Mapping Centre (EMC McGill). It is funded under the Canadian Epigenetics, Environment, and Health Research Consortium (CEEHRC) by the Canadian Institutes of Health Research and by Genome Quebec (CIHR EP1-120608), with additional support from Genome Canada and FRSQ. T.P. holds a Canada Research Chair

    RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity

    Get PDF
    For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21 - pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program

    H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3

    Get PDF
    Epigenetic regulatory mechanisms and their enzymes are promising targets for malaria therapeutic intervention; however, the epigenetic component of gene expression in P. falciparum is poorly understood. Dynamic or stable association of epigenetic marks with genomic features provides important clues about their function and helps to understand how histone variants/modifications are used for indexing the Plasmodium epigenome. We describe a novel, linear amplification method for next-generation sequencing (NGS) that allows unbiased analysis of the extremely AT-rich Plasmodium genome. We used this method for high resolution, genome-wide analysis of a histone H2A variant, H2A.Z and two histone H3 marks throughout parasite intraerythrocytic development. Unlike in other organisms, H2A.Z is a constant, ubiquitous feature of euchromatic intergenic regions throughout the intraerythrocytic cycle. The almost perfect colocalisation of H2A.Z with H3K9ac and H3K4me3 suggests that these marks are preferentially deposited on H2A.Z-containing nucleosomes. By performing RNA-seq on 8 time-points, we show that acetylation of H3K9 at promoter regions correlates very well with the transcriptional status whereas H3K4me3 appears to have stage-specific regulation, being low at early stages, peaking at trophozoite stage, but does not closely follow changes in gene expression. Our improved NGS library preparation procedure provides a foundation to exploit the malaria epigenome in detail. Furthermore, our findings place H2A.Z at the cradle of P. falciparum epigenetic regulation by stably defining intergenic regions and providing a platform for dynamic assembly of epigenetic and other transcription related complexes

    The endothelial glycocalyx: composition, functions, and visualization

    Get PDF
    This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging

    RAD21 cooperates with pluripotency transcription factors in the maintenance of embryonic stem cell identity

    No full text
    For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21--pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program
    corecore