16,056 research outputs found
Low-dimensional light-emitting transistor with tunable recombination zone
We present experimental and numerical studies of a light-emitting transistor
comprising two quasi-lateral junctions between a two-dimensional electron and
hole gas. These lithographically defined junctions are fabricated by etching of
a modulation doped GaAs/AlGaAs heterostructure. In this device electrons and
holes can be directed to the same area by drain and gate voltages, defining a
recombination zone tunable in size and position. It could therefore provide an
architecture for probing low-dimensional devices by analysing the emitted light
of the recombination zone.Comment: 12 Pages, to be published in Journal of Modern Optic
Quantized charge pumping through a quantum dot by surface acoustic waves
We present a realization of quantized charge pumping. A lateral quantum dot
is defined by metallic split gates in a GaAs/AlGaAs heterostructure. A surface
acoustic wave whose wavelength is twice the dot length is used to pump single
electrons through the dot at a frequency f=3GHz. The pumped current shows a
regular pattern of quantization at values I=nef over a range of gate voltage
and wave amplitude settings. The observed values of n, the number of electrons
transported per wave cycle, are determined by the number of electronic states
in the quantum dot brought into resonance with the fermi level of the electron
reservoirs during the pumping cycle.Comment: 8 page
Disordered Electrons in a Strong Magnetic Field: Transfer Matrix Approaches to the Statistics of the Local Density of States
We present two novel approaches to establish the local density of states as
an order parameter field for the Anderson transition problem. We first
demonstrate for 2D quantum Hall systems the validity of conformal scaling
relations which are characteristic of order parameter fields. Second we show
the equivalence between the critical statistics of eigenvectors of the
Hamiltonian and of the transfer matrix, respectively. Based on this equivalence
we obtain the order parameter exponent for 3D quantum
Hall systems.Comment: 4 pages, 3 Postscript figures, corrected scale in Fig.
Transport on Directed Percolation Clusters
We study random lattice networks consisting of resistor like and diode like
bonds. For investigating the transport properties of these random resistor
diode networks we introduce a field theoretic Hamiltonian amenable to
renormalization group analysis. We focus on the average two-port resistance at
the transition from the nonpercolating to the directed percolating phase and
calculate the corresponding resistance exponent to two-loop order.
Moreover, we determine the backbone dimension of directed percolation
clusters to two-loop order. We obtain a scaling relation for that is in
agreement with well known scaling arguments.Comment: 4 page
Anomalously strong pinning of the filling factor nu=2 in epitaxial graphene
We explore the robust quantization of the Hall resistance in epitaxial
graphene grown on Si-terminated SiC. Uniquely to this system, the dominance of
quantum over classical capacitance in the charge transfer between the substrate
and graphene is such that Landau levels (in particular, the one at exactly zero
energy) remain completely filled over an extraordinarily broad range of
magnetic fields. One important implication of this pinning of the filling
factor is that the system can sustain a very high nondissipative current. This
makes epitaxial graphene ideally suited for quantum resistance metrology, and
we have achieved a precision of 3 parts in 10^10 in the Hall resistance
quantization measurements
Gap Anisotropy and de Haas-van Alphen Effect in Type-II Superconductors
We present a theoretical study on the de Haas-van Alphen (dHvA) oscillation
in the vortex state of type-II superconductors, with a special focus on the
connection between the gap anisotropy and the oscillation damping. Numerical
calculations for three different gap structures clearly indicate that the
average gap along extremal orbits is relevant for the magnitude of the extra
damping, thereby providing a support for experimental efforts to probe gap
anisotropy through the dHvA signal. We also derive an analytic formula for the
extra damping which gives a good fit to the numerical results.Comment: 5 pages, 1 figure, changes in Introductio
Disorder induced Dirac-point physics in epitaxial graphene from temperature-dependent magneto-transport measurements
We report a study of disorder effects on epitaxial graphene in the vicinity
of the Dirac point by magneto-transport. Hall effect measurements show that the
carrier density increases quadratically with temperature, in good agreement
with theoretical predictions which take into account intrinsic thermal
excitation combined with electron-hole puddles induced by charged impurities.
We deduce disorder strengths in the range 10.2 31.2 meV, depending on
the sample treatment. We investigate the scattering mechanisms and estimate the
impurity density to be cm for our samples.
An asymmetry in the electron/hole scattering is observed and is consistent with
theoretical calculations for graphene on SiC substrates. We also show that the
minimum conductivity increases with increasing disorder potential, in good
agreement with quantum-mechanical numerical calculations.Comment: 6 pages, 3 figure
The sensitivity of harassment to orbit: Mass loss from early-type dwarfs in galaxy clusters
We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed
- …