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We report a study of disorder effects on epitaxial graphene in the vicinity of the Dirac point by
magneto-transport. Hall effect measurements show that the carrier density increases quadratically
with temperature, in good agreement with theoretical predictions which take into account intrinsic
thermal excitation combined with electron-hole puddles induced by charged impurities. We deduce
disorder strengths in the range 10.2 ∼ 31.2 meV, depending on the sample treatment. We investigate
the scattering mechanisms and estimate the impurity density to be 3.0 ∼ 9.1 × 1010 cm−2 for
our samples. An asymmetry in the electron/hole scattering is observed and is consistent with
theoretical calculations for graphene on SiC substrates. We also show that the minimum conductivity
increases with increasing disorder potential, in good agreement with quantum-mechanical numerical
calculations.

PACS numbers: 72.80.Vp, 71.23.-k, 72.10.-d

I. INTRODUCTION

Many of the exceptional electronic properties of
graphene arise from its linear dispersion relation [1, 2].
However, when the Fermi energy approaches the Dirac
point, its properties can be dominated by the effects
of disorder, which can be both intrinsic (such as rip-
ples, topological lattice defects) and extrinsic (including
cracks/voids, adatoms, charged impurities, etc.), in gen-
eral varying from sample to sample [3]. Of particular
significance are the effects of disorder potentials on elec-
trical transport properties [4] due to the lack of screening
at very low carrier densities. Microscopically, the fluctu-
ating electrostatic potential breaks up the intrinsically
homogeneous charge distribution into electron-hole pud-
dles [5–9]. This effect is recognised to mainly originate
from unintendedly introduced charged impurities, whose
type, spatial distribution and density also depend on the
sample environment, device fabrication techniques, and
particularly graphene synthesis and treatment processes.

Recently, epitaxial graphene on SiC (SiC/G) has been
reported to have very high quantum Hall breakdown
current density [10] which potentially allows a quantum
electrical resistance standard operating at even higher
temperatures and lower magnetic fields [11]. Low and
well controlled carrier density is required to achieve high
breakdown current in these conditions, and understand-
ing the disorder effects is therefore highly important. To
date, there are very few experimental studies of disorder
in epitaxial graphene grown on SiC due to the intrin-
sically high level of doping from the substrate [12]. In
this letter, using extremely low carrier density epitaxial
graphene, we describe the role of disorder in governing
the temperature dependent magneto-transport.

II. METHODS AND METHODOLOGY

Our SiC/G samples were epitaxially grown on the Si-
terminated face of 4H-SiC at T = 2000 ◦C and P = 1
atm Ar, as reported elsewhere [11, 13–15]. The as-grown
samples have large uniform monolayer areas, where de-
vices with an 8-leg Hall bar geometry of various sizes were
fabricated using standard electron beam lithography fol-
lowed by O2 plasma etching and large-area titanium-gold
contacting. A non-volatile polymer gating technique was
used to control the carrier density in epitaxial graphene
by room-temperature UV illumination [16] or corona dis-
charge [17]. The polymer gates consist of bilayer poly-
mer coating on top of the graphene Hall bars, form-
ing SiC/graphene/polymer heterostructures. The first
layer is PMMA/MMA copolymer, followed by the second
layer of UV sensitive polymer ZEP520A [16]. Both DC
and AC magneto-transport measurements were carried
out using an Oxford Instruments 21 T superconducting
magnet with a variable temperature insert which allows
temperature-dependent measurements from 1.4 K up to
300 K.

Magneto-transport measurements were made on three
SiC/G devices, which we denote CD1, CD2 and UV1.
We used two different techniques to reduce the relatively
high initial electron density and tune the Fermi level to
the vicinity of the Dirac point, where 4-probe resistance
maxima were observed: CD1 and CD2 were treated with
multiple negative ion projections onto the bilayer poly-
mer gate, produced by corona discharge using a piezo-
activated antistatic gun [17], resulting in extremely low
final electron densities of 1.2 and 1.3 × 1010 cm−2, re-
spectively; UV1 was treated with deep UV illumination
using a 248-nm mercury lamp [16] which eventually re-
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FIG. 1. (Color online) The Hall resistance Rxy and the longitudinal resistance Rxx as a function of magnetic field at temperatures
from 1.4 K to 300 K for sample CD2. The sample enters the quantum Hall regime already from about 0.6 T as observed from
the quantised Rxy and the vanishing Rxx at low temperatures.

duced the electron density to 8 × 1010 cm−2. As we
will show below, these values should not be treated as
the real electron densities, but merely are effective car-
rier densities, neff , calculated from the low-field Hall co-
efficients at 1.4 K assuming a homogeneous landscape
with a single type of charge carriers. In the absence of
disorder, these densities would correspond to an upper
limit for the Fermi energy (EF = ~vF

√
πneff , where vF

is the Fermi velocity), which is between 12.7 meV and
32.9 meV, based on the assumption of a linear dispersion
where the density of states vanishes at the Dirac point
[18]. In reality, due to the effects of disorder, a residual
density of states and coexistence of electrons and holes
[6] at EF → 0 are expected, thus, the determination
of an extremely low Fermi energy from Hall effect mea-
surements becomes non-trivial. The overall net charge
density is much lower than neff , but differences in the
mobilities of the two carrier types still create a finite Hall
coefficient at the Dirac point which corresponds to the
resistivity maximum studied here.

III. RESULTS AND DISCUSSIONS

A. Intrinsic Activation in the Presence of

Electron-Hole Puddles

In Fig. 1 we present typical experimental results: the
Hall resistance Rxy and the longitudinal resistance Rxx

of sample CD2 as a function of magnetic field at temper-
atures from 1.4 K to 300 K. In our study, all three devices
show similar behaviour as shown in Fig. 1. Due to the
extremely low carrier densities of the samples, quantum
Hall plateau corresponding to the filling factor ν = 2
can be observed already from about 0.6 T at 1.4 K. The
Hall resistance becomes significantly non-linear when ap-
proaching the quantum Hall regime. Therefore, to ex-
tract the zero-field carrier densities of our devices, only

Hall coefficients between -0.1 T and +0.1 T are used.
It has been theoretically studied and experimentally

confirmed that, close to the Dirac point, as a consequence
of disorder, the carrier density landscape is extremely in-
homogeneous and electron-hole puddles are formed [4–9].
Classically, the low-field Hall coefficient in the presence
of both electrons and holes is given by,

RH ≡ Ey

JxB
= −1

e

neµ
2
e − nhµ

2
h

(neµe + nhµh)2
, (1)

where ne (nh) and µe (µh) are the electron (hole) den-
sity and mobility, respectively. Similar two-carrier anal-
yses are also found in the literature for this electron-hole
coexistence regime in monolayer and bilayer graphene
[19, 20]. The carrier density directly extracted from this
two-carrier low-field Hall effect is therefore effectively,

neff =
(neµe + nhµh)

2

neµ2
e − nhµ2

h

. (2)

When the Fermi energy is zero, i.e. at charge neutrality
point (CNP), ne = nh > 0. Thus, neff = αne, where

α =
µe
µh

+1
µe
µh

−1 . Notably, for electron-like behaviour (RH <

0), α > 0; for hole-like behaviour (RH > 0), α < 0.
We now analyse the temperature dependence of the

effective carrier density neff as shown in Fig. 2 for the
three devices. A quadratic increase of neff with increas-
ing temperature can be clearly observed for all of the
samples. Each sample also exhibits a distinct non-zero
residual charge density at the low temperature limit even
when EF → 0, indicating that the potential landscape of
our devices is highly inhomogeneous. These features are
clearly different from the Arrhenius behaviour of conven-
tional semiconductors and intrinsic thermal activation in
graphene when no disorder effects are accounted for (i.e.,
there is no residual carrier density). Accurate fitting
can be made based on the theory [4] assuming that the
electronic potential energy of disordered graphene follows
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FIG. 2. (Color online) Temperature dependence of the ef-
fective carrier densities neff deduced using Eq. (1) and (2)
for sample CD1, CD2 and UV1. Quadratic increase with in-
creasing temperature is observed, together with non-vanishing
carrier densities neff,0 at T → 0 K. The experimental data
is well fitted using Eq. (4) and (5) as shown in the figure
(dash lines), where the disorder potential strength s and the
mobility ratio µe/µh are extracted from the fitting.

Gaussian statistics, which give the probability of finding
the local potential within a range dV about V ,

P (V )dV =
1√
2πs2

e−
V 2

2s2 dV , (3)

where s is a parameter used to characterise the strength
of the potential fluctuations. As a consequence, the
temperature-dependent charge density at CNP for both
electrons and holes are [4],

ne(T ) = nh(T ) =
gsgv

2π(~vF )2
[
s2

4
+

(πkBT )
2

12
], (4)

where gs = gv = 2 are the spin and valley degeneracies,
and vF ≈ 106 m/s is the Fermi velocity. The temperature
dependence of the effective carrier density is therefore,

neff (T ) = αne(T ), (5)

where α is assumed to be constant over the tempera-
ture range under consideration. The predicted temper-
ature dependence from Eq. (4) and (5) fits the experi-
mental data very well (Fig. 2), giving potential fluctu-
ation strengths s = 12.7, 10.2 and 31.3 meV, and pre-
factors α which translate into mobility ratios of electrons
to holes µe/µh = 2.04, 1.85 and 2.36, for the devices
CD1, CD2 and UV1 respectively. Table I shows compar-
isons of the potential fluctuations due to electron-hole
puddles, between the values deduced from our magneto-
transport measurements and those found in the litera-
ture [5–9], where most of the characterizations are based
on scanning tunnelling microscopy (STM). Table I also
includes the disorder strength (15 ± 1 meV) from our
analysis of the published data for SiC/G samples exposed
to aqueous-ozone (AO) processing [21], which results in

TABLE I. Energy Fluctuations of e-h Puddles in Graphene

Synthesis (Treatment) Disorder Strength Probing Method

Epitaxial on SiC (CD1) 12.7 ± 0.6 meV Magneto-transport

Epitaxial on SiC (CD2) 10.2 ± 0.4 meV Magneto-transport

Epitaxial on SiC (UV1) 31.3 ± 2.0 meV Magneto-transport

Epitaxial on SiC (AO) 15 ± 1 meV Magneto-transport

Epitaxial on SiC 12 meV KPM [5]

Exfoliated on SiO2/Si 50 meV SET [6]

Exfoliated on SiO2/Si ∼ 20 meV STM [7]

Exfoliated on h-BN 5.4 meV STM [8]

CVD on Ir(111) ∼ 30 meV STM/STS [9]

high mobility and extremely low p-type doping with an
effective carrier density neff,0 = −4.0× 1010 cm−2 (neg-
ative sign for hole-like behaviour) from Hall measure-
ments. We find that the disorder strengths measured in
our samples are consistent with those reported previously
for SiC/G, and are smaller than those of CVD and exfoli-
ated samples on SiO2, while they are slightly larger than
that of exfoliated graphene on h-BN, which is an atom-
ically smooth, dangling bonds free and lattice-matched
substrate to support high quality graphene [22]. These
comparisons suggest that SiC/G generally has very good
quality and relatively small amounts of disorder, even
though the actual characteristics are expected to vary
from sample to sample and may also be sensitive to the
sample treatment as seen from Table I. At the same time,
it is demonstrated that magneto-transport measurement
is an additional effective method to investigate the dis-
order effects and characteristics in graphene.

B. Scattering Mechanisms

To evaluate the scattering mechanisms in our SiC/G
samples, we now turn to examine the temperature de-
pendence of the longitudinal conductivity σxx and the
electron mobility as shown in Fig. 3. Carrier mobilities
of individual species are calculated classically based on,

σxx = e(neµe + nhµh) =
eneff

α
(µe + µh), (6)

via Eq. (5) and the value µe

µh
deduced from α. It is

observed that σxx(T ) remains slowly varying with weak
non-monotonic fluctuations for a large range of temper-
atures. Similar behaviour has been reported for mono-
layer graphene samples when EF ≈ 0 [23, 24], and this is
clearly different from thermally activated conductivity in
conventional gapped semiconductors and from phonon-
limited behaviour in graphene, which will result in a T−4

or T−1 dependence [25, 26] at low or high temperatures
respectively due to intravalley acoustic phonon scatter-
ing. It should be pointed out that this temperature de-
pendence of conductivity in our extremely low carrier
density samples could be a combination of various con-
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tributions. It is believed that this weakly varying conduc-
tivity is mainly due to the temperature-dependent carrier
density as described above and the µ(T ) dependence as
we will discuss below. At the lowest temperatures there
are also temperature dependent weak localization correc-
tions, which can be seen from Fig. 1b around B = 0 T
but have been excluded in Fig. 3a. Fig. 3b shows the
electron mobility as a function of temperature, as well as
the mobility limits as a result of various scattering mech-
anisms, including impurity scattering, scattering by lon-
gitudinal acoustic (LA) phonons in graphene, and also by
remote interfacial phonons (RIP) at the SiC/graphene in-
terface [27, 28]. In the case of charged impurities, carrier
mobility is inversely proportional to the impurity density
nimp [18, 29],

µimp ≈ C0

nimp

, (7)

where C0 is a constant. For LA phonon scattering [25],

µLA =
e~ρsv

2
sv

2
F

πneD2
AkBT

, (8)

with ρs = 7.6 × 107 kg/m2 the two-dimensional mass
density, vs = 1.7 × 104 m/s the sound velocity, and
DA = 18 eV the acoustic deformation potential. The
RIP limited mobility is given by [27, 28],

µRIP =
1

nee
[
∑

i

(
Ci

exp ( Ei

kBT
)− 1

)]−1, (9)

where Ci and Ei are electron-phonon coupling constants
and phonon energies of the phonon modes under consid-
eration. To fit our data, we first considered three phonon
modes: two out-of-plane acoustic phonon modes in epi-
taxial graphene (E1 = 70 meV and E2 = 16 meV) [27, 30]
and a surface phonon mode of 4H-SiC (E3 = 117 meV)
[27, 28, 31]. However, due to their relative large phonon
energies, none of these can yield a reasonable fit, which
can only be obtained (Fig. 3b solid lines) when an addi-
tional low-energy phonon mode (E4 ≈ 2 meV) is intro-
duced. This is consistent with the previously reported
results [27, 28, 32, 33], and this low-frequency remote
phonon mode has been recognised to originate from the
interaction between graphene and the buffer layer, that
they are oscillating out-of-phase parallel to each other.
It can be seen from Fig. 3b that impurity scattering

plays the most dominant role at low temperatures (<
100 K), while the high-temperature mobility is probably
limited by RIP scattering, since LA phonons make only
a small contribution to the overall mobility for tempera-
tures below 400 K. Using C0 ≈ 5× 1015 V−1s−1 [29], the
densities of charged impurities for our SiC/G samples are
estimated to be 3.0 ∼ 9.1 × 1010 cm−2, which are 1 ∼
2 orders of magnitude lower than that in typical exfoli-
ated [35] and CVD grown [36, 37] graphene on SiO2, but
are comparable to that of h-BN supported graphene [38],
consistent with its high charge carrier mobility. Even
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FIG. 3. (Color online) (a) The longitudinal conductivity as a
function of temperature, where weak non-monotonic depen-
dences are shown. (b) The temperature dependence of the
electron mobility of our samples. Individual contributions
due to impurity scattering (green/pink/blue dash lines) for
all three samples, LA phonon scattering (blue dash-dot line),
RIP scattering (blue dash-dot-dot line) for UV1 as an exam-
ple are shown. The solid lines represent the overall µe(T )
dependence by fitting the experimental data. (c) σmin as

a function of disorder strength. An β(s − ∆)
1

2 dependence
(green dash-dot line) is observed from our experimental data
(green triangles). σmin as a function of K0 from numerical
calculations by Adam et al. (gray circles and solid line), as
well as predictions using the Boltzmann (blue dash line) and
the self-consistent Boltzmann (red solid line) theories are also
shown [34].

though we restrict the above analysis to phonon and im-
purity scattering, other possible scattering mechanisms
exist, such as scattering due to ripples [39, 40] and very
large defects [41]. Quantitative analysis of these mecha-
nisms on our devices is rather difficult since systematic
examination of the sample morphology is required and,
on the other hand, the theoretical pictures are rather
complicated and still contentious [42].
So far we have been able to identify that charge carrier

scattering at low temperatures in our SiC/G is mainly
due to impurities, in the classical regime where quantum
corrections are suppressed by magnetic fields. It is these
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impurities which provide the same origin for generating
the electron-hole puddles at EF → 0. Furthermore, these
impurities are most likely to be charged/Coulomb impu-
rities rather than short-range impurities. The main evi-
dence for this is the presence of unequal electron and hole
mobilities, which is a consequence of the unbalanced scat-
tering cross sections for charged scatterers in a system
with 2D relativistic dispersion [29, 43]. This theory can
be intuitively understood from the idea that an attractive
potential scatters a charge carrier more effectively than
a repulsive potential [43]. As presented in Fig. 2, we
have obtained similar µe/µh in the range of 1.85 ∼ 2.36.
According to the theory [43], assuming a single species
of monovalent (|Z| = 1) impurities, the above mobility
ratios can be translated into a dimensionless asymmetry
factor c = 0.30 ∼ 0.39, which is used to characterise the
strength of this asymmetry effect (i.e. c = 0 for µe = µh

and c → 1 for µe(h) ≫ µh(e)). The nature of this asym-
metry factor depends on the dielectric constant of the
substrate: for SiO2, c|ǫr=3.9 ≈ 0.46; for SiC substrates,
the same as used in our devices, c|ǫr=10.0 ≈ 0.32, which
is in very good agreement with our experimental results.
Small variations around the predicted value are expected,
since the actual electrostatic environment of each SiC/G
sample could also be affected by the polymer top-gate di-
electrics, meanwhile, the types and amounts of charged
impurities present in our samples could be more complex.

C. Minimum Conductivity of Disordered Graphene

Finally, the effects of disorder potential fluctuations
on the low-temperature non-vanishing minimum conduc-
tivity (σmin) at the Dirac point are investigated for
graphene in the diffusive transport regime. This property
has been extensively considered theoretically and the two
main existing approaches lead to contradictory results
[34]. The semiclassical Boltzmann transport theory pre-
dicts a decreasing σmin with increasing disorder strength.
With a self-consistent modification to the Boltzmann the-
ory, a subsequent increase of the minimum conductiv-
ity for higher disorder strengths is predicted. On the
other hand, the minimum conductivity treated quantum-
mechanically [34, 44–46] is increased for the entire disor-
der strength range for a non-interacting model using a
Gaussian correlated disorder potential. Experimentally,
very few studies can be found addressing this problem in
the literature [29]. Shown in Fig. 3c is the minimum con-
ductivity (atB = 0) as a function of the disorder strength
s obtained from our measurements when quantum correc-
tions have been taken into account, as well as theoretical
predictions including the numerical calculation via the
quantum mechanical approach by Adam et al. [34], and
results form the (self-consistent) Boltzmann theories, for
L = 50ξ, where L is the sample length, ξ is the cor-
relation length of the assumed random Gaussian poten-
tial U(r) in the system and the dimensionless parameter

K0 ∝ 〈U(r)U(r′)〉 is the disorder strength used in the
theories. Our experimental results show that the min-
imum conductivity increases with increasing s, roughly
following a β(s −∆)

1

2 dependence locally in the (0.5 ∼
2.5) × 4e2

h
range, highlighted by the green dash-dot line

in the figure, where β and ∆ are constants. This increase
agrees qualitatively well with the theoretical predictions
[34] from the quantum-mechanical approach, where we
assume s ∝

√
K0. However, our data do not agree with

the results from the Boltzmann and the self-consistent
Boltzmann theory as shown in the figure. In addition, we
note that the minimum conductivity may have a complex
dependence on the sample length and details of quantum
interference effects [34, 47, 48], and also be a function of
the charged impurity density nimp indicated from pre-
vious experimental work by Chen et al. [29], whose re-
sults suggest that σmin drops with increasing nimp at low
impurity densities and may saturate rapidly. To allow
a more conclusive interpretation, however, more exper-
imental data and systematic comparisons between well-
controlled samples from different synthesis methods and
a larger range of disorder potentials and impurity densi-
ties would be needed.

IV. CONCLUSIONS

In summary, we have presented temperature de-
pendent magneto-transport measurements on epitaxial
graphene. We have demonstrated the disorder effects
when the Fermi energy lies in the vicinity of the Dirac
point, and have been able to identify the main origin
of those effects to be charged impurities. The disorder
strength and the impurity densities of our samples have
been estimated from experimental results. We have also
shown that the minimum conductivity increases with in-
creasing disorder strength, in good agreement with nu-
merical quantum-mechanical calculations. Overall, the
application of this method can, therefore, provide an al-
ternative and effective route for quantitatively studying
the disorder characteristics in graphene and other two-
dimensional materials.
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