47 research outputs found

    Critical Epitopes in the Nucleocapsid Protein of SFTS Virus Recognized by a Panel of SFTS Patients Derived Human Monoclonal Antibodies

    Get PDF
    BACKGROUND: SFTS virus (SFTSV) is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS) in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs) recognized the nucleocapsid (N) protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection

    Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against rift valley fever virus

    Get PDF
    Background: Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings: We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance: These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. © 2010 Bhardwaj et al

    Biosafety standards for working with Crimean-Congo hemorrhagic fever virus

    Get PDF
    In countries from which Crimean-Congo haemorrhagic fever (CCHF) is absent, the causative virus CCHF virus (CCHFV) is classified as a hazard group 4 agent and handled in containment level 4. In contrast, most endemic countries out of necessity have had to perform diagnostic tests under biosafety level (BSL) 2 or 3 conditions. In particular, Turkey and several of the Balkan countries have safely processed more than 100000 samples over many years in BSL-2 laboratories. It is therefore advocated that biosafety requirements for CCHF diagnostic procedures should be revised, to allow the required tests to be performed under enhanced BSL-2 conditions with appropriate biosafety laboratory equipment and personal protective equipment used according to standardized protocols in the affected countries. Downgrading of CCHFV research work from Cl- 4,BSL-4 to Cl-3 ,BSL-3 should also be considered.Funding was received through CCH Fever Network (Collaborative Project) supported by the European Commission under the Health Cooperation Work Program of the 7th Framework Program (Grant agreement no. 260427) (http://www.cch-fever.eu/).http://vir.sgmjournals.orghb2017Veterinary Tropical Disease

    Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

    Get PDF
    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model

    South African Ebola diagnostic response in Sierra Leone : a modular high biosafety field laboratory

    Get PDF
    BACKGROUND : In August 2014, the National Institute for Communicable Diseases (NICD) in South Africa established a modular high-biosafety field Ebola diagnostic laboratory (SA FEDL) near Freetown, Sierra Leone in response to the rapidly increasing number of Ebola virus disease (EVD) cases. METHODS AND FINDINGS : The SA FEDL operated in the Western Area of Sierra Leone, which remained a ªhotspotº of the EVD epidemic for months. The FEDL was the only diagnostic capacity available to respond to the overwhelming demand for rapid EVD laboratory diagnosis for several weeks in the initial stages of the EVD crisis in the capital of Sierra Leone. Furthermore, the NICD set out to establish local capacity amongst Sierra Leonean nationals in all aspects of the FEDL functions from the outset. This led to the successful hand-over of the FEDL to the Sierra Leone Ministry of Health and Sanitation in March 2015. Between 25 August 2014 and 22 June 2016, the laboratory tested 11,250 specimens mostly from the Western Urban and Western Rural regions of Sierra Leone, of which 2,379 (21.14%) tested positive for Ebola virus RNA. CONCLUSIONS : he bio-safety standards and the portability of the SA FEDL, offered a cost-effective and practical alternative for the rapid deployment of a field-operated high biocontainment facility. The SA FEDL teams demonstrated that it is highly beneficial to train the national staff in the course of formidable disease outbreak and accomplished their full integration into all operational and diagnostic aspects of the laboratory. This initiative contributed to the international efforts in bringing the EVD outbreak under control in Sierra Leone, as well as capacitating local African scientists and technologists to respond to diagnostic needs that might be required in future outbreaks of highly contagious pathogens.S1 Video. ªHotº processing of Ebola clinical specimens, PPE and decontamination procedures in South African modular, field-operated biocontainment facility in Sierra Leone.Janusz T Paweska was supported by funding from National Research Foundation and the Global Disease Detection Programmehttp://www.plosntds.orgam2017Microbiology and Plant Patholog

    Application of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for the detection of SFTSV-specific human IgG and IgM antibodies by indirect ELISA

    Get PDF
    Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that was first reported in China in 2011. It is caused by SFTS virus (SFTSV) which is a member of the Phlebovirus genus in the Bunyaviridae family. SFTSV has been classified as a BSL3 pathogen. There is a need to develop safe and affordable serodiagnostic methods for proper clinical management of infected patients. Methods: The full length nucleocapsid (N) gene of SFTSV Yamaguchi strain was amplified by RT-PCR and cloned to an expression vector pQE30. The recombinant (r) SFTSV-N protein was expressed by using Escherichia coli (E. coli) expression system and purified under native conditions. rSFTSV-N protein based indirect IgG and IgM enzyme linked immunosorbent assay (ELISA) systems were established to detect specific human IgG and IgM antibodies, respectively. One hundred fifteen serum samples from clinically suspected-SFTS patients were used to evaluate the newly established systems and the results were compared with the total antibody detecting sandwich ELISA system. Results: The native form of recombinant (r) SFTSV-N protein was expressed and purified. Application of the rSFTSV-N protein based indirect IgG ELISA to the 115 serum samples showed results that perfectly matched those of the total antibody sandwich ELISA with a sensitivity and specificity of 100 %. The rSFTSV-N protein based indirect IgM ELISA missed 8 positive samples that were detected by the total antibody sandwich ELISA. The sensitivity and specificity of rSFTSV-N-IgM capture ELISA were 90.59 and 100 %, respectively. Conclusions: The rSFTSV-N protein is highly immunoreactive and a good target for use as an assay antigen in laboratory diagnosis. Its preparation is simpler in comparison with that used for the total antibody sandwich system. Our rSFTSV-N protein-based IgG and IgM ELISA systems have the advantage of distinguishing two types of antibodies and require small volume of serum sample only. They are safe to use for diagnosis of SFTS virus infection and especially fit in large-scale epidemiological investigations

    Taxonomy of the family Arenaviridae and the order Bunyavirales : update 2018

    Get PDF
    In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.Peer reviewe

    Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018

    Get PDF
    In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future

    Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins

    Get PDF

    Population Genetics and Biosystematics SSA Exam

    No full text
    Exam paper for second semester: Population Genetics and Biosystematics SSA Exa
    corecore