13,219 research outputs found

    The lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory

    Get PDF
    We present an analysis of the baryon-octet and -decuplet masses using covariant SU(3)-flavor chiral perturbation theory up to next-to-leading order. Besides the description of the physical masses we address the problem of the lattice QCD extrapolation. Using the PACS-CS collaboration data we show that a good description of the lattice points can be achieved at next-to-leading order with the covariant loop amplitudes and phenomenologically determined values for the meson-baryon couplings. Moreover, the extrapolation to the physical point up to this order is found to be better than the linear one given at leading-order by the Gell-Mann-Okubo approach. The importance that a reliable combination of lattice QCD and chiral perturbation theory may have for hadron phenomenology is emphasized with the prediction of the pion-baryon and strange-baryon sigma terms.Comment: Typos in formulas correcte

    Reweighting towards the chiral limit

    Full text link
    We propose to perform fully dynamical simulations at small quark masses by reweighting in the quark mass. This approach avoids some of the technical difficulties associated with direct simulations at very small quark masses. We calculate the weight factors stochastically, using determinant breakup and low mode projection to reduce the statistical fluctuations. We find that the weight factors fluctuate only moderately on nHYP smeared dynamical Wilson-clover ensembles, and we could successfully reweight 16^4, (1.85fm)^4 volume configurations from m_q = 20MeV to m_q = 5MeV quark masses, reaching the epsilon-regime. We illustrate the strength of the method by calculating the low energy constant F from the epsilon-regime pseudo-scalar correlator.Comment: 17 pages, 8 figure

    The geomorphological setting of some of Scotland's east coast freshwater mills: a comment on Downward and Skinner (2005) ‘Working rivers: the geomorphological legacy...’

    Get PDF
    Many of the water mills on Scotland's east coast streams, unlike those discussed recently by Downward and Skinner (2005 Area 37 138–47), are found in predominantly bedrock reaches immediately downstream of knickpoints (i.e. bedrock steps). Bedrock knickpoints in the lower reaches of Scottish rivers are a widespread fluvial response to the glacio-isostatic rebound of northern Britain. These steps in the river profile propagate headward over time, but for intervals of a few centuries or so they are sufficiently stable to be exploited for the elevational fall necessary to power the mill wheel. Many of these mills were apparently powered by ‘run-of-the-river’, as are some today that formerly had mill dams. The typical lack of sediment storage along the erosional lower reaches of many Scottish rivers means that failure of mill structures in Scotland will probably have less dramatic geomorphological and management implications than those suggested by Downward and Skinner for southern English rivers

    Precise Determination of |V{us}| from Lattice Calculations of Pseudoscalar Decay Constants

    Full text link
    Combining the ratio of experimental kaon and pion decay widths, Gamma(K to mu antineutrino{mu} (gamma)) / Gamma(pi to mu \antineutrino (gamma)), with a recent lattice gauge theory calculation of f{K}/f{pi} provides a precise value for the CKM quark mixing matrix element |V{us}|=0.2236(30) or if 3 generation unitarity is assumed |V{us}|=0.2238(30). Comparison with other determinations of that fundamental parameter, implications, and an outlook for future improvements are given

    A Robust AFPTAS for Online Bin Packing with Polynomial Migration

    Get PDF
    In this paper we develop general LP and ILP techniques to find an approximate solution with improved objective value close to an existing solution. The task of improving an approximate solution is closely related to a classical theorem of Cook et al. in the sensitivity analysis for LPs and ILPs. This result is often applied in designing robust algorithms for online problems. We apply our new techniques to the online bin packing problem, where it is allowed to reassign a certain number of items, measured by the migration factor. The migration factor is defined by the total size of reassigned items divided by the size of the arriving item. We obtain a robust asymptotic fully polynomial time approximation scheme (AFPTAS) for the online bin packing problem with migration factor bounded by a polynomial in 1ϵ\frac{1}{\epsilon}. This answers an open question stated by Epstein and Levin in the affirmative. As a byproduct we prove an approximate variant of the sensitivity theorem by Cook at el. for linear programs

    Towards overcoming the Monte Carlo sign problem with tensor networks

    No full text
    The study of lattice gauge theories with Monte Carlo simulations is hindered by the infamous sign problem that appears under certain circumstances, in particular at non-zero chemical potential. So far, there is no universal method to overcome this problem. However, recent years brought a new class of non-perturbative Hamiltonian techniques named tensor networks, where the sign problem is absent. In previous work, we have demonstrated that this approach, in particular matrix product states in 1+1 dimensions, can be used to perform precise calculations in a lattice gauge theory, the massless and massive Schwinger model. We have computed the mass spectrum of this theory, its thermal properties and real-time dynamics. In this work, we review these results and we extend our calculations to the case of two flavours and non-zero chemical potential. We are able to reliably reproduce known analytical results for this model, thus demonstrating that tensor networks can tackle the sign problem of a lattice gauge theory at finite densit

    Interventions for improving health literacy in people with chronic kidney disease

    Get PDF
    This is the protocol for a review and there is no abstract. The objectives are as follows: This review aims to look at the benefits and harms of interventions for improving health literacy in patients with CKD

    Lattice Gauge Theory -- Present Status

    Full text link
    Lattice gauge theory is our primary tool for the study of non-perturbative phenomena in hadronic physics. In addition to giving quantitative information on confinement, the approach is yielding first principles calculations of hadronic spectra and matrix elements. After years of confusion, there has been significant recent progress in understanding issues of chiral symmetry on the lattice. (Talk presented at HADRON 93, Como, Italy, June 1993.)Comment: 11 pages, BNL-4946

    A theoretical investigation of ferromagnetic tunnel junctions with 4-valued conductances

    Full text link
    In considering a novel function in ferromagnetic tunnel junctions consisting of ferromagnet(FM)/barrier/FM junctions, we theoretically investigate multiple valued (or multi-level) cell property, which is in principle realized by sensing conductances of four states recorded with magnetization configurations of two FMs; that is, (up,up), (up,down), (down,up), (down,down). To obtain such 4-valued conductances, we propose FM1/spin-polarized barrier/FM2 junctions, where the FM1 and FM2 are different ferromagnets, and the barrier has spin dependence. The proposed idea is applied to the case of the barrier having localized spins. Assuming that all the localized spins are pinned parallel to magnetization axes of the FM1 and FM2, 4-valued conductances are explicitly obtained for the case of many localized spins. Furthermore, objectives for an ideal spin-polarized barrier are discussed.Comment: 9 pages, 3 figures, accepted for publication in J. Phys.: Condens. Matte

    Statistics of Certain Models of Evolution

    Get PDF
    In a recent paper, Newman surveys the literature on power law spectra in evolution, self-organised criticality and presents a model of his own to arrive at a conclusion that self-organised criticality is not necessary for evolution. Not only did he miss a key model (Ecolab) that has a clear self-organised critical mechanism, but also Newman's model exhibits the same mechanism that gives rise to power law behaviour as does Ecolab. Newman's model is, in fact, a ``mean field'' approximation of a self-organised critical system. In this paper, I have also implemented Newman's model using the Ecolab software, removing the restriction that the number of species remains constant. It turns out that the requirement of constant species number is non-trivial, leading to a global coupling between species that is similar in effect to the species interactions seen in Ecolab. In fact, the model must self-organise to a state where the long time average of speciations balances that of the extinctions, otherwise the system either collapses or explodes. In view of this, Newman's model does not provide the hoped-for counter example to the presence of self-organised criticality in evolution, but does provide a simple, almost analytic model that can used to understand more intricate models such as Ecolab.Comment: accepted in Phys Rev E.; RevTeX; See http://parallel.hpc.unsw.edu.au/rks/ecolab.html for more informatio
    • …
    corecore