18 research outputs found

    Molecular and morphological diversity in the /Rhombisporum clade of the genus Entoloma with a note on E. cocles

    Get PDF
    A combined morphological and molecular genetic study of the European species within the /Rhombisporum clade of the genus Entoloma reveals a high species diversity. This group comprises typical grassland species with pronounced and welldifferentiated cheilocystidia, and a wide range of spore shapes varying from rhomboid to five-angled. To fix the concept of the classical species E. rhombisporum, a neotype is designated. Nine species are described as new to science based on the result of nrDNA ITS phylogeny with additional gap coding, and morphological characterization: E. caulocystidiatum, E. lunare, E. pararhombisporum, E. pentagonale, E. perrhombisporum, E. rhombiibericum, E. rhombisporoides, E. sororpratulense, and E. subcuboideum. The ITS sequences of the holotypes of previously described species belonging to the /Rhombisporum clade, viz., E. laurisilvae and E. pratulense have also been generated and are published here for the first time. Since many of the above-mentioned species have been misidentified as E. cocles, it seemed opportune to also study this species and to designate a neotype to fix its current concept. A key including European species is presented. As most of the species are potentially important indicators for threatened grassland communities, the 130 ITS barcodes newly generated for this study may be useful as a reference in conservation and metabarcoding projects. Agaricales . Conservation . Endangered grassland communities . Entolomataceae semi-cryptic diversity . Taxonomy . TricholomatinaepublishedVersio

    Viable Tumor Tissue Adherent to Needle Applicators after Local Ablation: A Risk Factor for Local Tumor Progression

    Get PDF
    Background. Local tumor progression (LTP) is a serious complication after local ablation of malignant liver tumors, negatively influencing patient survival. LTP may be the result of incomplete ablation of the treated tumor. In this study, we determined whether viable tumor cells attached to the needle applicator after ablation was associated with LTP and disease-free survival. Methods. In this prospective study, tissue was collected of 96 consecutive patients who underwent local liver ablations for 130 liver malignancies. Cells and tissue attached to the needle applicators were analyzed for viability using glucose-6-phosphate-dehydrogenase staining and autofluorescence intensity levels of H&E stained sections. Patients were followed-up until disease progression. Results. Viable tumor cells were found on the needle applicators after local ablation in 26.7% of patients. The type of needle applicator used, an open approach, and the omission of track ablation were significantly correlated with viable tumor tissue adherent to the needle applicator. The presence of viable cells was an independent predictor of LTP. The attachment of viable cells to the needle applicators was associated with a shorter time to LTP. Conclusions. Viable tumor cells adherent to the needle applicators were found after ablation of 26.7% of patients. An independent risk factor for viable cells adherent to the needle applicators is the omission of track ablation. We recommend using only RFA devices that have track ablation functionality. Adherence of viable tumor cells to the needle applicator after local ablation was an independent risk factor for LT

    Fungal systematics and evolution : FUSE 6

    Get PDF
    Fungal Systematics and Evolution (FUSE) is one of the journal series to address the “fusion” between morphological data and molecular phylogenetic data and to describe new fungal taxa and interesting observations. This paper is the 6th contribution in the FUSE series—presenting one new genus, twelve new species, twelve new country records, and three new combinations. The new genus is: Pseudozeugandromyces (Laboulbeniomycetes, Laboulbeniales). The new species are: Albatrellopsis flettioides from Pakistan, Aureoboletus garciae from Mexico, Entomophila canadense from Canada, E. frigidum from Sweden, E. porphyroleucum from Vietnam, Erythrophylloporus flammans from Vietnam, Marasmiellus boreoorientalis from Kamchatka Peninsula in the Russian Far East, Marasmiellus longistipes from Pakistan, Pseudozeugandromyces tachypori on Tachyporus pusillus (Coleoptera, Staphylinidae) from Belgium, Robillarda sohagensis from Egypt, Trechispora hondurensis from Honduras, and Tricholoma kenanii from Turkey. The new records are: Arthrorhynchus eucampsipodae on Eucampsipoda africanum (Diptera, Nycteribiidae) from Rwanda and South Africa, and on Nycteribia vexata (Diptera, Nycteribiidae) from Bulgaria; A. nycteribiae on Eucampsipoda africanum from South Africa, on Penicillidia conspicua (Diptera, Nycteribiidae) from Bulgaria (the first undoubtful country record), and on Penicillidia pachymela from Tanzania; Calvatia lilacina from Pakistan; Entoloma shangdongense from Pakistan; Erysiphe quercicola on Ziziphus jujuba (Rosales, Rhamnaceae) and E. urticae on Urtica dioica (Rosales, Urticaceae) from Pakistan; Fanniomyces ceratophorus on Fannia canicularis (Diptera, Faniidae) from the Netherlands; Marasmiellus biformis and M. subnuda from Pakistan; Morchella anatolica from Turkey; Ophiocordyceps ditmarii on Vespula vulgaris (Hymenoptera, Vespidae) from Austria; and Parvacoccum pini on Pinus cembra (Pinales, Pinaceae) from Austria. The new combinations are: Appendiculina gregaria, A. scaptomyzae, and Marasmiellus rodhallii. Analysis of an LSU dataset of Arthrorhynchus including isolates of A. eucampsipodae from Eucampsipoda africanum and Nycteribia spp. hosts, revealed that this taxon is a complex of multiple species segregated by host genus. Analysis of an SSU–LSU dataset of Laboulbeniomycetes sequences revealed support for the recognition of four monophyletic genera within Stigmatomyces sensu lato: Appendiculina, Fanniomyces, Gloeandromyces, and Stigmatomyces sensu stricto. Finally, phylogenetic analyses of Rhytismataceae based on ITS–LSU ribosomal DNA resulted in a close relationship of Parvacoccum pini with Coccomyces strobi.http://www.sydowia.at/index.htmpm2021Medical Virolog

    Skewed X-inactivation is common in the general female population

    Get PDF
    X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants

    Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis

    No full text
    Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA

    Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis

    No full text
    Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA

    Molecular and morphological diversity in the /Rhombisporum clade of the genus Entoloma with a note on E. cocles

    Get PDF
    A combined morphological and molecular genetic study of the European species within the /Rhombisporum clade of the genus Entoloma reveals a high species diversity. This group comprises typical grassland species with pronounced and welldifferentiated cheilocystidia, and a wide range of spore shapes varying from rhomboid to five-angled. To fix the concept of the classical species E. rhombisporum, a neotype is designated. Nine species are described as new to science based on the result of nrDNA ITS phylogeny with additional gap coding, and morphological characterization: E. caulocystidiatum, E. lunare, E. pararhombisporum, E. pentagonale, E. perrhombisporum, E. rhombiibericum, E. rhombisporoides, E. sororpratulense, and E. subcuboideum. The ITS sequences of the holotypes of previously described species belonging to the /Rhombisporum clade, viz., E. laurisilvae and E. pratulense have also been generated and are published here for the first time. Since many of the above-mentioned species have been misidentified as E. cocles, it seemed opportune to also study this species and to designate a neotype to fix its current concept. A key including European species is presented. As most of the species are potentially important indicators for threatened grassland communities, the 130 ITS barcodes newly generated for this study may be useful as a reference in conservation and metabarcoding projects. Agaricales . Conservation . Endangered grassland communities . Entolomataceae semi-cryptic diversity . Taxonomy . Tricholomatina
    corecore