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Abstract

X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed
at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of
the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the
general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the
imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children
and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total
counts at all X-chromosomal heterozygous single-nucleotide variants with coverage >210. We identified two individuals
where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios
<0.35 or 20.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a
theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the
hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate
less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2,
and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest
that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms
in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the
interpretation of X-linked variants.
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timing in humans is still elusive. Once the choice for
the inactivation of either the maternal or paternal
X-chromosome is made, it is stably inherited to all daughter
cells through mitosis. The choice of which of the two
X-chromosomes is inactivated is random and does not
depend on paternal or maternal origin. Therefore, females
are mosaic and consist of a population of cells with
preferential expression of either paternal or maternal
X-chromosome. Not all females have equal proportions
of cells with the paternal or maternal X-chromosome inac-
tivated. This so-called skewed X-inactivation can be
explained in different ways [3]. Firstly, skewing might
be caused by selective pressure: a variant on one of the
X-chromosomes is associated with lethality or limited sur-
vival and will undergo negative selection [4]. This explains,
to a certain degree, symptoms in female carriers of variants
associated with X-linked recessive diseases. For example,
in the X-linked recessive disorder Duchenne muscular
Dystrophy (DMD), a number of female cases with trans-
locations that forced the inactivation of the normal DMD
allele, were already reported in the 1980s [5-8]. Secondly,
the cause of skewing may be purely stochastic in nature:
just by chance more cells inactivate the paternal or maternal
X-chromosome [9]. Given that X-inactivation is occurring
in an embryonic stage where there are limited number of
cells giving rise to the different germ layers, this may lead
to skewing in the compartment arising from these limited
sets of precursor cells.

X-chromosome inactivation is the example of an extra-
ordinary epigenetic silencing mechanism spreading across
the entire human ~160 Mbp chromosome. The inactive
allele of the X-chromosome is heavily methylated, enriched
for inactive histone modifications, and depleted for active
ones [10]. X-inactivation requires a cis-acting master locus
referred to as the X-inactivation center. This center is
located in the long arm of X-chromosome in humans. It
is known that expression of long non-protein coding RNA
gene XIST within this center is essential for silencing
[11, 12]. This gene is expressed only from the “inactive” X-
chromosome and XIST RNA coats the inactive X allele [13].

The inactive X-chromosome is not entirely silent. In
humans, nearly 15% of X-linked genes are thought to
escape inactivation and are expressed from both active and
inactive X-chromosomes [14]. The majority of these genes
are located on the short arm of X-chromosome and form
clusters [15]. The degree of “escape” from inactivation is
variable between genes, tissues, time in development, and
individuals. Thereby, X-linked genes could be classified as
inactivated (that are silenced in all females), escape (escape
inactivation in all females), and heterogeneous (escape
X-inactivation in some females; also referred to as variable
escapees) [14, 16]. Determining which genes escape
X-inactivation has important clinical implications, as they
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may explain the inheritance pattern and/or penetrance of
disease.

In this study, we investigated X-inactivation in the blood
of a population of healthy daughters from the Genome of
the Netherlands (GoNL) project [17] of which large-scale
RNA-sequencing (RNA-seq) were generated. We took
advantage of the availability of full genome sequences of
the parents to unequivocally assign reads covering hetero-
zygous single-nucleotide variants (SNVs) to the maternal
and paternal alleles, and assessed the degree of skewing in
the population and the genes that consistently escape X-
inactivation in the population. Finally, we discuss the
implications for the clinical diagnostic practice.

Methods
General

Figure S1 represents the schematic overview of the main set
of procedures. Scripts and example data files are available at
https://github.com/eshvetsova/X_inactivation_scripts

Parent-of-origin assignment and allele-specific
expression calling

Sample preparation and blood RNA-seq data processing
have been described previously [17, 18] and in the Sup-
plementary Methods. For the analysis of skewing patterns,
we limited the analysis to the regions outside the pseu-
doautosomal regions (non-PAR regions) of the X-chromo-
some, to avoid mapping artifacts and influence of crossing-
over events with the paternal Y-chromosome. We deter-
mined the parent of origin of all alleles heterozygous in the
offspring by comparing offspring’s genotype information of
each heterozygous loci with the corresponding genotype
information of the parents. As males have only one variant
of each SNV on X-chromosome, we assigned the allele
equal to the one present in the father to be paternal and the
remaining one to be maternal.

We extracted reads mapped to the SNV positions,
separately for each individual. The reads were grouped
by the presence of the reference or the alternative allele
at the SNV position. Independently, the reads were
grouped by their parent-of-origin allele based on the par-
ental genotypes. Based on counts within these groups at
each SNV position of an individual, we calculated the

) and the
paternal count

paternal count+maternal coum)‘ We
kept only SNV positions with coverage of at least 10 reads
and only SNV positions overlapping exons of annotated
genes. From the allelic and paternal ratios of these

alternative count

allelic ratio (allehc ratio = alternative count+reference count

paternal ratio (paternal ratio =
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remaining SNVs, we calculated the mean and median
paternal and allelic ratios for each individual.

Analysis of individual genes

To determine whether a gene escapes X-inactivation,
we selected skewed individuals with a median paternal
ratio across the entire X-chromosome (see previous
paragraph) of <0.35 or 20.65. We used the following
procedure for the analysis of skewing status of individual
genes:

Let Mx = median (paternal ratio[i,k]), where i =1, ..., m,
with m being the number of SNVs (covered by 210 reads) on
the X-chromosome in a sample and Mg = median (paternal
ratio[j,k]), where j=1, ..., n, with n being the number of
SNVs in a sample that are mapped to the gene g and where
k=1, ..., p, with p being the number of samples with SNVs
in the gene g. Note that m and n differ per sample and that
we analyze only the genes with p > 5. Further, let Sx = IMx
— 0.5 and Sg =IMg — 0.5] be the skew factors (the distance
from 0.5, where 0.5 reflects balanced expression of the
paternal and maternal alleles), then for each gene we
have two possible situations:

(1) X-chromosome and gene g agree distance direction
(Mg >0.5 and Mx>0.5)I(Mg<0.5 and Mx<0.5)=>
We perform the paired  test: t.test(Sx[k], Sg[k], alter-
native = “less”).

(2) X-chromosome and gene g disagree on distance
direction (Mg <0.5 and Mx>0.5)I(Mg > 0.5 and Mx
<0.5) =>We perform the paired ¢ test: t.test(Sx[k],
—Sgl[k], alternative =“less”).

The null hypothesis in the test is that the median paternal
ratio of the gene is not different from the overall median
paternal ratio for that individual, consistent with absence of
escapee behavior. The alternative hypothesis is that the
median paternal ratio of the gene is closer to 0.5 than the
overall median paternal ratio for that individual, consistent
with escapee behavior.

Analysis of mothers

RNA-seq data and DNA genotype for mothers in GoNL
project were analyzed with the same quality controls and
filters as applied to their offspring. Because of lack of
information about parent of origin of alleles for mothers, we
computed the measure of balance for each mother and off-

. f bal __ min(alternative count,reference count)
Spring, as measure ol balance = =y ive count+ reference count *
We calculated the median measure of balance for
each individual as the median of measure of balance for

all heterozygous SNVs with at least ten reads in the

corresponding individual. Correlation between median
measure of balance for mothers and their daughters was
computed as Pearson's correlation coefficient.

Simulation of skewing in the population after
random X-inactivation

We ran simulations to demonstrate how random X-
inactivation in 4, 8, 16, or 32 precursor cells would
translate into different skewing patterns in the population.
To this end, we used the rbinom function where n represents
the number of cells, the number of trials equals 1, and
the probability of the X-inactivation of the maternal
X-chromosome is 0.5. We then calculated the average
of maternal inactivation events across cells (equivalent to the
paternal ratio) for each individual and this 10,000 times to
arrive at a population distribution. We compared the theo-
retical distributions with the empirically observed distribu-
tion and used the Kolmogorov—Smirnov test to evaluate
which theoretical distribution of paternal ratios was closest
(highest p value in the test) to the empirical distribution.

Ethics approval, consent, and data availability

The ethical approval for this study lies with the individual
participating cohorts (CODAM, LL, LLS, and RS) and
institutional review boards. A broad consent for participa-
tion in research, including research on genotypes, was
obtained from all participants. Given the privacy-sensitive
nature of the DNA and RNA data, the data have been
deposited at the European Genome-Phenome Archive
(EGA) under the accession number EGAS00001001077
and is under controlled access. Requests for the data can be
filed in the EGA system and will be handled by the BIOS
data access committee. The committee will provide access
to researchers for studies with a solid scientific background.

Information on the variants that were used to call
the novel escapee genes was submitted to LOVD and
are publicly available at https://databases.lovd.nl/shared/
individuals/00173710 until https://databases.lovd.nl/shared/
individuals/00173724

Results

Overall characterization of the input data
and methods

We have characterized the X-inactivation patterns in the
blood of healthy individuals using RNA-seq data derived
from 79 adult daughters from trios of the GoNL whole-
genome sequencing project. The availability of parental
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Fig. 1 Distribution of mean A
allelic (a) and paternal (b) ratios
for each individual. Black lines
are the smoothed density curves
corresponding with the obtained
distributions
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DNA sequences makes it possible to accurately distinguish
the maternal and the paternal chromosome. After filtering
for non-exonic single-nucleotide variants (SNVs), SNVs
with low coverage, and SNVs in pseudoautosomal regions,
we obtained 30-150 informative, heterozygous SNVs per
individual (Figure S2). We determined the parent of origin
for each allele and calculated the allelic and paternal ratios.
We define the allelic ratio as the ratio between the counts
for the alternative allele and the total allele counts at
that position, and the paternal ratio as the ratio between
the counts for the paternal allele and the total allele counts
at that position. We subsequently calculated the mean
and median paternal ratio across the X-chromosome in
each individual, as a measure for the degree of skewing
of X-inactivation.

Distribution of skewing in the population: examples
of skewed and non-skewed individuals

Skewing in X-inactivation means preferential expression
of the paternal (median paternal ratio more than 0.5)
or maternal (median paternal ratio <0.5) chromosome.
Non-skewed individuals have paternal ratios close to 0.5.
Skewing in X-inactivation should not have a consistent
effect on the allelic ratio, and the mean allelic ratios are
expected to be close to 0.5 in each individual.

The distributions of the mean allelic and paternal ratios
for the 79 daughters are shown in Fig. la, b, respectively.
As expected, the mean allelic ratio has a narrow peak
slightly shifted to the left relative to 0.5, which is likely
attributed to reference bias [19]. The distribution of the
paternal ratios is much wider. We identified 14 (=17.7%)
individuals with preferential expression of maternal
X-chromosome (median paternal ratio <0.35) and 25
(=31.6%) individuals with preferential expression of the
paternal X-chromosome (median paternal ratio 20.65).
These thresholds for skewed X-inactivation were defined
as such, because there were no individuals with median
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Fig. 2 Lack of association between X-inactivation status in mothers
and daughters. Scatter plot of median measure of balance for mothers
(x-axis) and daughters (y-axis) at least ten reads coverage on hetero-
zygous SNVs. There is no significant correlation (Pearson’s p = 0.038,
p value =0.7934)

allelic ratios beyond these threshold values (Fig. la). At
the extreme end, we identified seven individuals with
pronounced skewing towards the paternal or maternal
chromosome in the blood (median paternal ratio >0.85
or £0.15) and two individuals with a median ratio of
1, effectively coming down to the inactivation of the same
X-chromosome in all blood cells.

Examples of the distributions of the allelic and paternal
ratios across all SNVs with sufficient coverage in an indi-
vidual are presented in Figure S3. The degree of skewing
did not depend on the age of the individual (Figure S4).

Correlation between skewing in mothers and
daughters

If X-inactivation is a random process, we should not
observe correlation in skewing between mothers and
daughters. We checked this, but, as we do not know
the parental origin of the alleles in the mothers, we
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Fig. 3 Theoretical assessment of cell numbers at the time of X-
inactivation. Comparison of the empirical median paternal ratio dis-
tribution for heterozygous SNVs with more than ten reads per indi-
vidual (orange line) with theoretical distributions under the hypothesis
that X-inactivation takes place at the 4 (dotted black line), 8 (dashed
black line), 16 (long dashed black line), and 32 (solid black line)
precursor stage. Theoretical distribution at eight initial lineage-
restricted precursor cells is most comparable with empirical distribu-
tion (highest p value =0.011, two-sample Kolmogorov—Smirnov test)

calculated an alternative measure of balance, the
median balance ratio (defined as the lowest of
measure of balance — min(alten?ativecoum,referencecount) across all

alternative count-reference count
X-chromosomal SNVs in an individual). RNA-seq data and
DNA genotypes for 141 mothers passed quality control. We
observed similar skewing distributions in the population
of mothers as we found for the populations of daughters,
and thus confirmed the presence of individuals with extre-
mely skewed X-inactivation in the normal population
(Figure S5). For the 49 complete mother:daughter pairs,
we did not observe significant correlation between the
skewing in mothers and daughters (Pearson's correlation
coefficient 0.038, Fig. 2). These results imply that the
imprinting status of a mother does not affect the inactivation
status of her daughter, as expected from the random nature
of the postconceptional X-inactivation process.

Simulations of random X-inactivation

Although the X-inactivation process is random, this does
not imply that the expression of maternal or paternal
chromosomes is equal in each individual. X-inactivation is
an event in early embryonic development at a stage where
there is only a limited number of precursor cells for the
hematopoietic lineage present. To test how many blood
(hematopoietic) precursor cells would be present at the time
of X-inactivation to explain the degree of skewing observed
in the general female population, we performed simulations.

In case X-inactivation happens when there are four pre-
cursor cells present, it is quite likely that all of them, just by
chance, inactivate the same (paternal or maternal) chromo-
some. One can see that 1 out of 16 individuals would
express only the paternal X-chromosome and 1 out of 16
individuals would express only the maternal X-chromo-
some, that is, one out of eight individuals show complete
skewing of X-chromosomal expression. When the initial
pool consists of 32 cells, this chance is only approximately
5% 107" We observed that the distribution of paternal
ratios in the population, in a scenario where X-inactivation
in the embryonic stage where eight cells give rise to
the hematopoietic compartment, was most similar to the
observed distribution in the female population under study
(Fig. 3).

XIST is expressed from the inactive X-chromosome

XIST is a long noncoding RNA, responsible for the initia-
tion of X-inactivation. XIST is transcribed from a single X-
chromosome poised for inactivation. Concordantly, in those
individuals who contain SNVs in XIST, we observe that
XIST is expressed from one chromosome and other
X-linked genes from the opposite one (Figure S6A). When
comparing XIST’s median paternal ratio with overall
median paternal ratio for skewed individuals, we see that
the distance of these ratios to 0.5 are opposite to the general
pattern in almost all skewed individuals (Figure S6B).
These observations confirm the expression of XIST from
the inactive X-chromosome.

Not all known escapee genes escape X-inactivation
in blood

The presence of individuals with extreme skewing patterns
allows us to analyze possible escape from X-inactivation
for individual genes, as the escapee genes should demon-
strate more balanced expression from the paternal and
maternal chromosomes than the X-inactivated genes. For
this analysis, we included individuals with either paternal or
maternal skewing (defined as paternal ratio <0.35 or 20.65;
39 samples), and compared the median paternal ratio for
that gene to the median paternal ratio of all heterozygous
loci in the X-chromosome for each individual and evaluated
whether that gene consistently deviated from the median
ratio across all the individuals with sufficient coverage,
using a one-sided ¢ test.

Of 271 X-linked genes present in our data, 113 had
SNVs with sufficient coverage in at least five individuals
(informative genes). As expected, for most of the analyzed
genes we do not see evidence for consistent escapee beha-
vior, like for TFE3 (Fig. 4d). We compared the results
of our escapee behavior analysis with previous studies

SPRINGER NATURE
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Fig. 4 Assessment of escape from X-inactivation. Histogram of the
skew factor for the entire X-chromosome (black bars) and for specific
example genes (gray bars) in all skewed individuals (one bar for each
individual) with coverage 210 on heterozygous SNVs in those genes.
A one-sided test was used to test whether the ratios for a given gene
were significantly different from the median ratio for the entire X-
chromosome. In a, b, two “known” escapee genes: [14, 20-23] PUDP
(ENSGO00000130021) appears to escape X-inactivation, whereas

(Fig. 5). For the majority of “known” escapee genes, like
PUDP (Fig. 4a), we obtained significant evidence for
escape from X-inactivation in blood, but others, like
TRAPPC2 (Fig. 4b), do not show such evidence. Collec-
tively, 21 of the informative genes were previously reported
to escape X-inactivation in at least one study [14, 20-23],
but only 11 of them escape X-inactivation in blood,
according to our data. On the contrary, we found three
genes that escape X-inactivation according to our data,
SSR4, REPS2, and SEPT6 (Fig. 4d-f), but have not been
described as an escapee (SSR4 and SEPT6) or have been
reported to escape X-inactivation in a subgroup of indivi-
duals (REPS2) [20]. Another gene that appeared significant
in our study is GAPDHP65 (Fig. 4g), but this (pseudo)gene

SPRINGER NATURE

p-value = 0.044

p-value = 0.001

TRAPPC2 (ENSG00000196459) does not. In c—g, several genes not
known to escape X-inactivation: ¢ TFE3 (ENSG00000068323) does
not escape X-inactivation (in line with the literature), whereas SSR4
(ENSGO00000180879), REPS2 (ENSG00000169891), and SEPT6
(ENSG00000125354) were identified to escape X-inactivation for the
first time in our study. g GAPDH65 (ENSG00000235587) was found
to be significant, but is a pseudogene and a likely false-positive gene
due to inaccurate read mapping

demonstrated a clear reference bias (for SN'Vs in this gene,
only reference allele is expressed), likely due to mapping of
reads derived from homologous genes, and should therefore
not be regarded as a new escapee gene. Results for all 113
informative genes are presented in Supplementary Table 1.
Collectively, we have identified several novel variable
escapee genes and our data reveal that many ‘“known”
escapee genes are most probably variable escapees.

Discussion

We report that skewed X-inactivation is common in the
general female population. The degree of skewed X-
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Our status Carrel Park

Escapee | Heterogeneous | Inactivated | Escapee [ Heterogeneous | Inactivated
Escapee 10/13 0/19 2/61 9/12 0/8 2/57
Non-escapee 3/13 19/19 59/61 3/12 8/8 55/57

Zhang Cotton

Escapee | Heterogeneous | Inactive Escapee | variable escape | subject
Escapee 0/1 9/66 4/31 9/11 2/15 1/59
Non-escapee 1/1 57/66 27/31 2/11 13/15 58/59

Tukiainen

Escapee | Inactive
Escapee 6/9 1/45
Non-escapee 3/9 44/45

Fig. 5 Overview of X-chromosomal genes that do (significant, p < 0.05) or do not (non-significant, p 2 0.05) escape X-inactivation in blood in our study
in comparison to previous studies. Note: The first number in each cell corresponds to the number of escapee (significant, p < 0.05) or non-escapee
(non-significant, p > =0.05) genes in our study, status of which matches the corresponding status in the literature [14,20-23]. The second number
in each cell shows how many overlapping genes between our study and each of the referenced studies have the corresponding status
according to the literature. Shading of the cells reflects degree of overlap (white: 0%, light grey: 1-50 %, grey: 51-99%, dark grey: 100%) Tissues
analyzed: Carrel - primary human fibroblast cell lines, rodent/human somatic cell hybrids [14] Park - primary human fibroblast cell lines, rodent/human
somatic cell hybrids [14] Zhang - immortalized human B-cells [22] Cotton - human fibroblast cell lines [20] Tukiainen - diverse human tissues [23]

inactivation reported earlier varies considerably [23, 24]. This
is partly due to the differences in the assays used to assess the
X-inactivation status. The most commonly used assay
examines the DNA methylation status of the polymorphic AR
locus (cf. HUMARA assay). Another group of assays ana-
lyzes allele-specific RNA expression at distinct heterozygous
loci by quantitative reverse transcription-polymerase chain

reaction (RT-PCR). The latter assays provide a more direct
output measurement of X-inactivation. A direct comparison
between allele-specific expression and HUMARA assay [25]
demonstrated a number of inconsistencies and suggested that
methylation status does not always reflect expression and that
the HUMARA assay may be influenced by preferential
amplification of AR alleles with shorter repeats. Moreover,

SPRINGER NATURE
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expression of a single X-linked locus may not reflect the
expression status of the entire X-chromosome as there
are genes with variable levels of escape from X-inactivation
in the healthy population. The combination of genome
and RNA-seq-based analysis presented here can be regarded
as an aggregate of all allele-specific expression measurements
over the entire X-chromosome, and a robust and direct way of
assessing X-inactivation status and skewing per individual.
This makes it a useful clinical diagnostic tool for assessing X-
inactivation status. In case the cost of RNA-seq are prohibi-
tive, allele-specific quantitative RT-PCR assays could serve as
an alternative, in particular when heterozygous loci have been
identified by Sanger sequencing, gene panel, whole-exome
sequencing, or whole-genome sequencing. However, based
on the presented results, we strongly recommend not relying
on single SNVs for the assessment of the X-inactivation
status, but to at least include SNVs in several different genes.

Our current RNA-seq-based results stand out from
previous papers, as we have observations along the entire
X-chromosome and can uniquely assign each of these
observations to the maternal or paternal chromosome, given
the availability of the full parental haplotypes. Nevertheless,
most of our results are consistent with earlier reports.
In the largest study so far, Amos-Landgraf et al. [24]
determined the distribution of X-inactivation patterns in
blood samples from 1005 phenotypically unaffected new-
born infants and adult women, using the AR methylation
assay. In the resulting data set, 25% of the individuals
demonstrated skewing ratios >0.7 or <0.3, and 8% of the
individuals demonstrated ratios >0.8 or <0.2. X-inactivation
ratio is normally distributed without mean shift. We
observed very similar percentages (27 and 10%, respec-
tively). In an earlier report by Sharp et al. [26], higher
percentages were reported, possibly because of technical
issues. Percentages were notably higher in elderly indivi-
duals. We have not observed a similar increase in skewing
with age as reported [24, 26-30]. This may be partly attri-
butable to differences in the age distribution studied, the
assay used, the loci studied, or the tissue analyzed. It
may also be that the relationship between methylation
(used in these studies to assess skewing) and expression
is gradually loosening with age. The observation that
skewing does not increase with age in our population (age
range 20-64 years) (Figure S4) argues against clonal
expansion of hematopoietic cells as an explanation for the
observed skewing pattern.

In a recently published RNA-seq-based paper from the
GTEx consortium assessing X-inactivation in the general
population across tissues, only 1 out of 449 individuals
demonstrated extreme skewing (>95% across 16 tissues) [23],
where we find already 2 in our population of 79 individuals.
This may be partly explained by the fact that we are able to
provide an accurate assignment of each allele to the paternal or
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maternal X, where parental genotypes are not available in the
GTEx cohort. In the GTEx paper, it is nicely demonstrated
that, despite variable escapee behavior across tissues, the X-
inactivation patterns are usually consistent across tissues.
Together with results from other studies [26, 31], this suggests
that X-inactivation status in the blood is at least partly pre-
dictive for X-inactivation status in other tissues.

Assessment of the X-inactivation status has important
implications for clinical diagnostics. Monoallelic or pre-
ferential expression of one of the alleles (skewing) is often
seen as an indication of the presence of a nonsense mutation
that induces nonsense-mediated decay. However, mono-
allelic expression needs to be seen in the context of the
inactivation status of the entire X-chromosome. We show
here that the mere fact that expression of only one allele is
observed provides insufficient proof for its pathogenicity.
This is further corroborated by the lack of correlation
between the X-inactivation status of mothers and daughters,
in line with the stochastic nature of the embryonic X-
inactivation process. Proof for pathogenicity is only obtained
when other (non-escapee) genes demonstrate biallelic
expression. If this is not the case, the individual may just be
a case of extreme skewing of X-chromosomal expression,
which is also observed in the normal population. Knowledge
of the X-inactivation status is also important for the classi-
fication of the increasing number of variants of unknown
significance (VUS) identified by genome-wide sequencing
technologies. Often, inheritance helps to classify VUS, but
X-linked segregation patterns may be clouded by skewed X-
inactivation. Skewing of X-inactivation may also explain the
phenomenon of symptomatic female carriers of X-linked
recessive disorders and differences in penetrance of domi-
nant disorders. There have been a number of conflicting
reports on the association of the X-inactivation status with
clinical symptoms in these disorders [9, 32-36]. The
assessment of X-inactivation status may explain why these
relationships are difficult to consolidate: the frequently used
AR methylation status may not be entirely predictive for the
inactivation status of the disease locus. Moreover, the sole
assessment of the AR methylation status does not tell whe-
ther the disease or the normal allele is preferentially inacti-
vated in a given individual.

The dynamics of X-inactivation in humans are still
largely unknown, but they are well studied in mice. Initia-
tion of random X-inactivation starts in the inner cell mass
mouse female blastocyst embryos at embryonic day (E)4,
whereas imprinted X-inactivation occurs at day E2 and
remains in the trophoblast cells [37, 38]. There are impor-
tant differences between the mechanisms of X-inactivation
in humans and mice. In humans, random X-inactivation
has not been observed in the inner cell mass at least until
day E7 and imprinted X-inactivation may not occur in
the trophoblast cells [39-41]. Interestingly, XIST and
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another long noncoding RNA XACT are expressed from
both X-chromosomes in blastocysts [41]. In our study,
we simulated random X-inactivation to calculate the
number of initial lineage-restricted blood precursor cells
and demonstrate that the observed skewing patterns in the
blood of the healthy female population are most consistent
with X-inactivation in an embryonic stage where there
are eight cells present that give rise to the hematopoietic
compartment.

Previous studies [14, 20-23] reported numerous genes
to escape from X-inactivation. However, results were not
entirely consistent between studies. This can be attributed
to differences in technical and statistical procedures, and
differences in the tissues analyzed and the transcripts
expressed from the genes in those tissues. Moreover, it
appears that that there is heterogeneity regarding escapee
genes between individuals, tissues, and time of develop-
ment; those are the so-called variable escapees [16]. Fig-
ure S6B contains an illustration of this heterogeneous
behavior: the paternal ratio for the TRAPPC2 gene is close
to 0.5 in one of the individuals with skewed X-inactivation,
but very close to the median paternal ratio for all genes in
most other individuals with similar degree of skewing,
suggesting that it does not escape X-inactivation in the
majority of individuals. We report here a small number of
genes (14 in total), for which we established consistent
escapee behavior in blood across the population.

In conclusion, we provide a robust and comprehensive
view on the X-inactivation patterns observed in the general
population and provide arguments for the need of careful
assessment and interpretation of skewed X-inactivation in
the clinical diagnostic practice.

Acknowledgements LUMC’s Sequence Analysis Support Core for
assistance with pipeline development and RNA-seq data submission.
We thank Andrew Sharp (Mount Sinai, NY, USA) for critically
reviewing the manuscript. The study was supported by the Moscow
State University — Leiden University Medical Center Bioinformatics
summer exchange program in bioinformatics (MoBiLe). This work
was partially funded by BBMRI-NL, a research infrastructure financed
by the Netherlands Organization for Scientific Research (NWO project
184.021.007).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Lyon MF. Gene action in the X-chromosome of the mouse
(Mus musculus L.). Nature. 1961;190:372-3.

2. Monk M, Boubelik M, Lehnert S. Temporal and regional changes
in DNA methylation in the embryonic, extraembryonic and germ
cell lineages during mouse embryo development. Development.
1987;99:371-82.

3. Brown CJ, Robinson WP. The causes and consequences of ran-
dom and non-random X chromosome inactivation in humans. Clin
Genet. 2000;58:353-63.

4. Van den Veyver IB. Skewed X inactivation in X-linked disorders.
Semin Reprod Med. 2001;19:183-91.

5. Emanuel BS, Zackai EH, Tucker SH. Further evidence for Xp21
location of Duchenne muscular dystrophy (DMD) locus: X;9
translocation in a female with DMD. J Med Genet. 1983;20:
461-3.

6. Jacobs PA, Hunt PA, Mayer M, Bart RD. Duchenne muscular
dystrophy (DMD) in a female with an X/autosome translocation:
further evidence that the DMD locus is at Xp2l. Am J Hum
Genet. 1981;33:513-8.

7. Nevin NC, Hughes AE, Calwell M, Lim JH. Duchenne muscular
dystrophy in a female with a translocation involving Xp21. J Med
Genet. 1986;23:171-3.

8. Zatz M, Vianna-Morgante AM, Campos P, Diament AJ. Trans-
location (X; 6)in a female with Duchenne muscular dystrophy:
implications for the localisation of the DMD locus. J Med Genet.
1981;18:442-17.

9. Orstavik KH. X chromosome inactivation in clinical practice.
Hum Genet. 2009;126:363-73.

10. Wutz A. Gene silencing in X-chromosome inactivation: advances
in understanding facultative heterochromatin formation. Nat Rev
Genet. 2011;12:542-53.

11. Borensztein M, Syx L, Ancelin K, et al. Xist-dependent imprinted
X inactivation and the early developmental consequences of its
failure. Nat Struct Mol Biol. 2017;24:226-33.

12. Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA
paints the inactive X chromosome at interphase: evidence
for a novel RNA involved in nuclear/chromosome structure.
J Cell Biol. 1996;132:259-75.

13. Brown CJ, Ballabio A, Rupert JL, et al. A gene from the region of
the human X inactivation centre is expressed exclusively from the
inactive X chromosome. Nature. 1991;349:38-44.

14. Carrel L, Willard HF. X-inactivation profile reveals extensive
variability in X-linked gene expression in females. Nature.
2005;434:400-4.

15. Disteche CM. Escapees on the X chromosome. Proc Natl Acad
Sci USA. 1999;96:14180-2.

16. Deng X, Berletch JB, Nguyen DK, Disteche CM. X chromosome
regulation: diverse patterns in development, tissues and disease.
Nat Rev Genet. 2014;15:367-78.

17. Genome of the Netherlands Consortium. Whole-genome sequence
variation, population structure and demographic history of the
Dutch population. Nat Genet. 2014;46:818-25.

18. Zhernakova DV, Deelen P, Vermaat M, et al. Identification of
context-dependent expression quantitative trait loci in whole
blood. Nat Genet. 2017;49:139-45.

19. Castel SE, Levy-Moonshine A, Mohammadi P, Banks E,
Lappalainen T. Tools and best practices for data processing in
allelic expression analysis. Genome Biol. 2015;16:195.

SPRINGER NATURE


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

E. Shvetsova et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Cotton AM, Ge B, Light N, Adoue V, Pastinen T, Brown CJ.
Analysis of expressed SNPs identifies variable extents of
expression from the human inactive X chromosome. Genome
Biol. 2013;14:R122.

Park C, Carrel L, Makova KD. Strong purifying selection at genes
escaping X chromosome inactivation. Mol Biol Evol. 2010;27:
2446-50.

Zhang Y, Castillo-Morales A, Jiang M, et al. Genes that escape X-
inactivation in humans have high intraspecific variability in
expression, are associated with mental impairment but are not
slow evolving. Mol Biol Evol. 2013;30:2588-601.

Tukiainen T, Villani A-C, Yen A, et al. Landscape of X chromo-
some inactivation across human tissues. Nature. 2017;550:244-8.
Amos-Landgraf JM, Cottle A, Plenge RM, et al. X chromosome-
inactivation patterns of 1,005 phenotypically unaffected females.
Am J Hum Genet. 2006;79:493-9.

Swierczek SI, Piterkova L, Jelinek J, et al. Methylation of AR
locus does not always reflect X chromosome inactivation state.
Blood. 2012;119:e100-109.

Sharp A, Robinson D, Jacobs P. Age- and tissue-specific variation
of X chromosome inactivation ratios in normal women. Hum
Genet. 2000;107:343-9.

Busque L, Mio R, Mattioli J, et al. Nonrandom X-inactivation
patterns in normal females: lyonization ratios vary with age.
Blood. 1996;88:59-65.

Fey MF, Liechti-Gallati S, von Rohr A, et al. Clonality and
X-inactivation patterns in hematopoietic cell populations detected
by the highly informative M27 beta DNA probe. Blood. 1994;
83:931-8.

Gale RE, Fielding AK, Harrison CN, Linch DC. Acquired
skewing of X-chromosome inactivation patterns in myeloid cells
of the elderly suggests stochastic clonal loss with age. Br J Hae-
matol. 1997;98:512-9.

Sandovici I, Naumova AK, Leppert M, Linares Y, Sapienza C. A
longitudinal study of X-inactivation ratio in human females. Hum
Genet. 2004;115:387-92.

Fialkow PJ. Primordial cell pool size and lineage relationships of
five human cell types. Ann Hum Genet. 1973;37:39-48.

Consortia

BIOS consortium

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Engelen M, Barbier M, Dijkstra IME, et al. X-linked adrenoleu-
kodystrophy in women: a cross-sectional cohort study. Brain.
2014;137:693-706.

Maier EM, Kammerer S, Muntau AC, Wichers M, Braun A,
Roscher AA. Symptoms in carriers of adrenoleukodystrophy
relate to skewed X inactivation. Ann Neurol. 2002;52:
683-8.

Salsano E, Tabano S, Sirchia SM, et al. Preferential expression
of mutant ABCD]1 allele is common in adrenoleukodystrophy
female carriers but unrelated to clinical symptoms. Orphanet J
Rare Dis. 2012;7:10.

Wang Z, Yan A, Lin Y, Xie H, Zhou C, Lan F. Familial skewed X
chromosome inactivation in adrenoleukodystrophy manifesting
heterozygotes from a Chinese pedigree. PLoS ONE. 2013;8:
e57977.

Watkiss E, Webb T, Bundey S. Is skewed X inactivation
responsible for symptoms in female carriers for adrenoleucody-
strophy? J Med Genet. 1993;30:651-4.

Mak W, Nesterova TB, de Napoles M, et al. Reactivation of the
paternal X chromosome in early mouse embryos. Science.
2004;303:666-9.

Takagi N, Sugawara O, Sasaki M. Regional and temporal changes
in the pattern of X-chromosome replication during the early post-
implantation development of the female mouse. Chromosoma.
1982;85:275-86.

Petropoulos S, Edsgidrd D, Reinius B, Deng Q, Panula SP,
Codeluppi S. et al. Single-cell RNA-seq reveals lineage and
X chromosome dynamics in human preimplantation embryos.
Cell. 2016;167:285

Moreira de Mello JC, Fernandes GR, Vibranovski MD, Pereira
LV. Early X chromosome inactivation during human pre-
implantation development revealed by single-cell RNA-sequen-
cing. Sci Rep. 2017;7:10794.

Vallot C, Patrat C, Collier AJ, et al. XACT noncoding
RNA competes with XIST in the cntrol of X chromosome activity
during human early development. Cell Stem Cell. 2017;20:
102-11.

Bastiaan T Heijmans? - Peter AC 't Hoen"'? - Joyce van Meurs’ - Dorret | Boomsma® - René Pool® -

Jenny van Dongen® - Jouke J Hottenga® - Marleen MJ van Greevenbroek'' - Coen DA Stehouwer'' -

Carla JH van der Kallen'" - Casper G Schalkwijk'! - Cisca Wijmenga® - Sasha Zhernakova® - Ettje F Tigchelaar® -
P Eline Slagboom? - Marian Beekman? - Joris Deelen? - Diana van Heemst'? - Jan H Veldink'® -

Leonard H van den Berg'® - Cornelia M van Duijn'* - Bert A Hofman'® - André G Uitterlinden’ - P Mila Jhamai’ -
Michael Verbiest” - H Eka D Suchiman® - Marijn Verkerk” - Ruud van der Breggen® - Jeroen van Rooij’ -

Nico Lakenberg® - Hailiang Mei® - Jan Bot'® - Dasha V Zhernakova® - Peter van 't Hof® - Patrick Deelen® -

Irene Nooren'® - Matthijs Moed® - Martijn Vermaat' - René Luijk® - Marc Jan Bonder® - Maarten van Iterson® -
Freerk van Dijk® - Michiel van Galen' - Wibowo Arindrarto® - Szymon M Kietbasa® - Morris A Swertz® -

Erik W van Zwet?® - Aaron Isaacs'"'* - Rick Jansen® - Lude Franke®

GoNL consortium

LC Francioli'” - A Menelaou'” - SL Pulit'” - F van Dijk® - PF Palamara'® - CC Elbers'” - PB Neerincx® - K Ye'®3 -
V Guryev® - WP Kloosterman'” - P Deelen® - A Abdellaoui® - EM van Leeuwen'® - M van Oven?® - M Vermaat' -
M Li?' - JF Laros' - LC Karssen'® - A Kanterakis® - N Amin'® - JJ Hottenga® - EW Lameijer® - M Kattenberg® -

SPRINGER NATURE



Skewed X-inactivation is common in the general female population

M Dijkstra® - H Byelas® - J van Setten'” - BD van Schaik?? - J Bot'® - 1J Nijman'” - | Renkens'’” - T Marschall® -

A Schénhuth? - JY Hehir-Kwa?*? - RE Handsaker?® - P Polak?® - M Sohail*® - D Vuzman?®® - F Hormozdiari®’ -

D van Enckevort® - H Mei® - V Koval’ - MH Moed? - KJ van der Velde® - F Rivadeneira'*’ - K Estrada®”’ -

C Medina-Gomez’ - A Isaacs'"'* - SA McCarroll*® - M Beekman® - AJ de Craen® - HE Suchiman® - BA Hofman'® -

B Oostra®® - AG Uitterlinden’ - G Willemsen® - M Platteel® - JH Veldink'® - LH van den Berg'? - SJ Pitts*® - S Potluri®® -
P Sundar® - DR Cox?’ - SR Sunyaev?® - JT den Dunnen'” - M Stoneking®' - P de Knijff*° - M Kayser?® - Q Li®' - Y Li® -
Y Du®' - R Chen®' - H Cao®' - N Li*?- S Cao3? - ) Wang®' - JA Bovenberg?? - | Pe’er'® - PE Slagboom? - CM van Duijn'* -
DI Boomsma® - GJ van Ommen' - Pl de Bakker'” - MA Swertz® - C Wijmenga®

11

20

21

22

Department of Internal Medicine, Maastricht University Medical
Center, Maastricht, The Netherlands

Department of Gerontology and Geriatrics, Leiden University
Medical Center, Leiden, The Netherlands

Department of Neurology, Brain Center Rudolf Magnus,
University Medical Center Utrecht, Utrecht, The Netherlands

Genetic Epidemiology Unit, ErasmusMC, Rotterdam, The
Netherlands

Department of Epidemiology, ErasmusMC, Rotterdam, The
Netherlands

SURFsara, Amsterdam, The Netherlands

Department of Medical Genetics, Center for Molecular Medicine,
University Medical Center Utrecht, Utrecht, The Netherlands

Department of Computer Science, Columbia University New
York, New York, USA

The Genome Institute, Washington University, St. Louis, MI,
USA

Department of Forensic Molecular Biology, ErasmusMC,
Rotterdam, The Netherlands

Department of Evolutionary Genetics, Max Planck Institute for
Evolutionary Anthropology, Leipzig, Germany

Bioinformatics Laboratory, Department of Clinical Epidemiology,

23

24

25

26

27

28

29

30

31

32

33

Biostatistics and Bioinformatics, Academic Medical Center
Amsterdam, Amsterdam, The Netherlands

Life Sciences Group, Centrum Wiskunde & Informatica,
Amsterdam, The Netherlands

Department of Human Genetics, Radboud University Medical
Center Nijmegen, Nijmegen, The Netherlands

Center for Neuroscience, Donders Institute for Brain, Cognition
and Behaviour, Radboud University Nijmegen Medical Center,
Nijmegen, The Netherlands

Program in Medical and Population Genetics, Broad Institute of
Harvard and MIT, Cambridge, MA, USA

Department of Genome Sciences, University of Washington,
Seattle, WA, USA

Department of Clinical Genetics, ErasmusMC, Rotterdam, The
Netherlands

Rinat-Pfizer Inc., South San Francisco, CA, USA

Forensic Laboratory for DNA research, Leiden University Medical
Center, Leiden, The Netherlands

BGI-Shenzhen, Shenzhen, China
BGI-Europe, Copenhagen, Denmark

Legal Pathways Institute for Health and Bio Law,
Aerdenhout, The Netherlands

SPRINGER NATURE



	Skewed X-inactivation is common in the general female population
	Abstract
	Introduction
	Methods
	General
	Parent-of-origin assignment and allele-specific expression calling
	Analysis of individual genes
	Analysis of mothers
	Simulation of skewing in the population after random X-inactivation
	Ethics approval, consent, and data availability

	Results
	Overall characterization of the input data and�methods
	Distribution of skewing in the population: examples of skewed and non-skewed individuals
	Correlation between skewing in mothers and daughters
	Simulations of random X-inactivation
	XIST is expressed from the inactive X-chromosome
	Not all known escapee genes escape X-inactivation in blood

	Discussion
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References
	A7




