187 research outputs found
Availability and affordability of treatment for Human African Trypanosomiasis.
Human African Trypanosomiasis (HAT) is a re-emerging disease whose usual treatments are becoming less efficient because of the increasing parasite resistance. Availability of HAT drugs is poor and their production in danger because of technical, ecological and economic constraints. In view of this dramatic situation, a network involving experts from NGOs, WHO and pharmaceutical producers was commissioned with updating estimates of need for each HAT drug for the coming years; negotiations with potential producers of new drugs such as eflornithine; securing sustainable manufacturing of existing drugs; clinical research into new combinations of these drugs for first and second-line treatments; centralizing drug purchases and their distribution through a unique non-profit entity; and addressing regulatory and legal issues concerning new drugs
Trypanosomiase humaine africaine : étude d'un score de présomption de diagnostic au Congo
Une enquête cas-témoins a été réalisée au Congo afin de définir une grille de score de présomption de la maladie du sommeil à #T.b. gambiense$, basée sur une sélection de critères cliniques et épidémiologiques de la trypanosomiase, utilisable par les structures sanitaires périphériques. L'enquête a été réalisée sur 163 cas et 326 témoins. Les signes cliniques et les symptômes retenus sont :fièvre, céphalées, prurit et lésions de grattage, diarrhée, oedèmes, adénopathies cervicales, troubles du sommeil, troubles de l'appétit, troubles sexuels, psychisme, signes neurologiques et autres troubles cliniques mineurs. Les autres critères retenus sont les antécédents de trypanosomiase humaine africaine (THA) et l'existence d'un cheptel dans la concession. L'analyse des résultats confirme qu'il n'existe pas de critère ou groupe de critères pathognomoniques. Aucun des critères sélectionnés n'est suffisamment discriminant pour permettre une sélection des trypanosomés parmi les consultants. Une grille de score de présomption semble donc de peu d'utilité au niveau périphérique; ceci est d'autant plus vrai si l'on considère l'augmentation de la charge de travail. Le faible pouvoir discriminant des signes cliniques et des symptômes ainsi que des autres paramètres de la trypanosomiase africaine met en évidence la difficulté de mise en place d'une stratégie d'intégration efficiente en tant qu'outil diagnostique précoce. (Résumé d'auteur
Image guidance in neurosurgical procedures, the "Visages" point of view.
This paper gives an overview of the evolution of clinical
neuroinformatics in the domain of neurosurgery. It shows how
image guided neurosurgery (IGNS) is evolving according to the integration of new imaging modalities before, during and after the surgical procedure and how this acts as the premise of the Operative Room of the future. These different issues, as addressed by the VisAGeS INRIA/INSERM U746 research team (http://www.irisa.fr/visages), are presented and discussed in order to exhibit the benefits of an integrated work between physicians (radiologists, neurologists and neurosurgeons) and computer scientists to give adequate answers toward a more effective use of
images in IGNS
Three-dimensional quantitative evaluation method of nonrigid registration algorithms for adaptive radiotherapy
Purpose: Current radiotherapy is progressing to the concept of adaptive radiotherapy, which implies the adaptation of planning along the treatment course. Nonrigid registration is an essential image processing tool for adaptive radiotherapy and image guided radiotherapy, and the three-dimensional (3D) nature of the current radiotherapy techniques requires a 3D quantification of the registration error that existing evaluation methods do not cover appropriately. The authors present a method for 3D evaluation of nonrigid registration algorithms’ performance, based on organ delineations, capable of working with near-spherical volumes even in the presence of concavities.
Methods: The evaluation method is composed by a volume shape description stage, developed using a new ad hoc volume reconstruction algorithm proposed by the authors, and an error quantification stage. The evaluation method is applied to the organ delineations of prostate and seminal vesicles, obtained by an automatic segmentation method over images of prostate cancer patients treated with intensity modulated radiation therapy.
Results: The volume reconstruction algorithm proposed has been shown to accurately model complex 3D surfaces by the definition of clusters of control points. The quantification method, inspired by the Haussdorf–Chebysev distance, provides a measure of the largest registration error per control direction, defining a valid metric for concave-convex volumes. Summarizing, the proposed evaluation methodology presents accurate results with a high spatial resolution in a negligible computation time in comparison with the nonrigid registration time.
Conclusions: Experimental results show that the metric selected for quantifying the registration error is of utmost importance in a quantitative evaluation based on measuring distances between volumes. The accuracy of the volume reconstruction algorithm is not so relevant as long as the reconstruction is tight enough on the actual volume of the organ. The new evaluation method provides a smooth and accurate volume reconstruction for both the reference and the registered organ, and a complete 3D description of nonrigid registration algorithms’ performance, resulting in a useful tool for study and comparison of registration algorithms for adaptive radiotherapy
Microwave frequency modulation to enhance Dissolution Dynamic Nuclear Polarization Dedicated to To Martial Rey, as a token of appreciation
Hyperpolarization by Dissolution Dynamic Nuclear Polarization is usually achieved by monochromatic microwave irradiation of the ESR spectrum of free radicals embedded in glasses at 1.2 K and 3.35 T. Hovav et al. (2014) have recently shown that by using frequency-modulated (rather than monochromatic) microwave irradiation one can improve DNP at 3.35 T in the temperature range 10-50 K. We show in this Letter that this is also true under Dissolution-DNP conditions at 1.2 K and 6.7 T. We demonstrate the many virtues of using frequency-modulated microwave irradiation: higher polarizations, faster build-up rates, lower radical concentrations, less paramagnetic broadening, more efficient cross-polarization, and less critical frequency adjustments. © 2014 The Authors. Published by Elsevier B.V
Comparative validation of single-shot optical techniques for laparoscopic 3-D surface reconstruction
Intra-operative imaging techniques for obtaining the shape and morphology of soft-tissue surfaces in vivo are a key enabling technology for advanced surgical systems. Different optical techniques for 3-D surface reconstruction in laparoscopy have been proposed, however, so far no quantitative and comparative validation has been performed. Furthermore, robustness of the methods to clinically important factors like smoke or bleeding has not yet been assessed. To address these issues, we have formed a joint international initiative with the aim of validating different state-of-the-art passive and active reconstruction methods in a comparative manner. In this comprehensive in vitro study, we investigated reconstruction accuracy using different organs with various shape and texture and also tested reconstruction robustness with respect to a number of factors like the pose of the endoscope as well as the amount of blood or smoke present in the scene. The study suggests complementary advantages of the different techniques with respect to accuracy, robustness, point density, hardware complexity and computation time. While reconstruction accuracy under ideal conditions was generally high, robustness is a remaining issue to be addressed. Future work should include sensor fusion and in vivo validation studies in a specific clinical context. To trigger further research in surface reconstruction, stereoscopic data of the study will be made publically available at www.open-CAS.com upon publication of the paper
Principles of operation of a DNP prepolarizer coupled to a rodent MRI scanner
A dynamic nuclear polarization prepolarizer was developed and coupled to a 9.4 T rodent magnetic resonance imaging scanner in order to perform in vivo hyperpolarization experiments. In the present paper, emphasis is put on methods and hardware performance rather than on in vivo results obtained with this setup. An overview of the main hardware components is given. The full procedure starting from the sample preparation and solid-state polarization to in vivo infusion is described. © 2008 Springer-Verlag
Ethical implications of AI in robotic surgical training: A Delphi consensus statement
CONTEXT: As the role of AI in healthcare continues to expand there is increasing awareness of the potential pitfalls of AI and the need for guidance to avoid them. OBJECTIVES: To provide ethical guidance on developing narrow AI applications for surgical training curricula. We define standardised approaches to developing AI driven applications in surgical training that address current recognised ethical implications of utilising AI on surgical data. We aim to describe an ethical approach based on the current evidence, understanding of AI and available technologies, by seeking consensus from an expert committee. EVIDENCE ACQUISITION: The project was carried out in 3 phases: (1) A steering group was formed to review the literature and summarize current evidence. (2) A larger expert panel convened and discussed the ethical implications of AI application based on the current evidence. A survey was created, with input from panel members. (3) Thirdly, panel-based consensus findings were determined using an online Delphi process to formulate guidance. 30 experts in AI implementation and/or training including clinicians, academics and industry contributed. The Delphi process underwent 3 rounds. Additions to the second and third-round surveys were formulated based on the answers and comments from previous rounds. Consensus opinion was defined as ≥ 80% agreement. EVIDENCE SYNTHESIS: There was 100% response from all 3 rounds. The resulting formulated guidance showed good internal consistency, with a Cronbach alpha of >0.8. There was 100% consensus that there is currently a lack of guidance on the utilisation of AI in the setting of robotic surgical training. Consensus was reached in multiple areas, including: 1. Data protection and privacy; 2. Reproducibility and transparency; 3. Predictive analytics; 4. Inherent biases; 5. Areas of training most likely to benefit from AI. CONCLUSIONS: Using the Delphi methodology, we achieved international consensus among experts to develop and reach content validation for guidance on ethical implications of AI in surgical training. Providing an ethical foundation for launching narrow AI applications in surgical training. This guidance will require further validation. PATIENT SUMMARY: As the role of AI in healthcare continues to expand there is increasing awareness of the potential pitfalls of AI and the need for guidance to avoid them.In this paper we provide guidance on ethical implications of AI in surgical training
Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner
For most of the last forty years, the techniques of Dynamic Nuclear Polarization (DNP) have been confined to particle-physics laboratories building polarized targets, but recently it has been shown that samples similar to a solid target can be transformed into room temperature liquid solutions while retaining a high nuclear polarization. This method of "hyperpolarization" is of interest in NMR/MRI/MRS. We describe a 3.35 T DNP/9.4 T MRI installation based on a continuous-flow cryostat, using a standard wide-bore low-field NMR magnet as prepolarizer magnet and a widely available radical as polarizing agent. The interfacing to a rodent scanner requires that the infusion of the polarized solution in the animal be remotely controlled, because of limited access inside the magnet bore. Physiological constraints on the infusion rate can be a serious source of polarization loss, and the discussion of efficiency is therefore limited to that of the prepolarizer itself, i.e., the spin temperatures obtained in the solid state. To put our results in context, we summarize data obtained in targets with different types of radicals, and provide a short review of the DNP mechanisms needed in their discussion. (C) 2007 Wiley Periodicals, Inc
SAGES consensus recommendations on an annotation framework for surgical video
Background: The growing interest in analysis of surgical video through machine learning has led to increased research efforts; however, common methods of annotating video data are lacking. There is a need to establish recommendations on the annotation of surgical video data to enable assessment of algorithms and multi-institutional collaboration. Methods: Four working groups were formed from a pool of participants that included clinicians, engineers, and data scientists. The working groups were focused on four themes: (1) temporal models, (2) actions and tasks, (3) tissue characteristics and general anatomy, and (4) software and data structure. A modified Delphi process was utilized to create a consensus survey based on suggested recommendations from each of the working groups. Results: After three Delphi rounds, consensus was reached on recommendations for annotation within each of these domains. A hierarchy for annotation of temporal events in surgery was established. Conclusions: While additional work remains to achieve accepted standards for video annotation in surgery, the consensus recommendations on a general framework for annotation presented here lay the foundation for standardization. This type of framework is critical to enabling diverse datasets, performance benchmarks, and collaboration
- …