1,174 research outputs found

    CJK- Improved LO Parton Distributions in the Real Photon and Their Experimental Uncertainties

    Full text link
    A new analysis of the radiatively generated, LO quark (u,d,s,c,b) and gluon densities in the real, unpolarized photon, improved in respect to our paper [1], is presented. We perform four new global fits to the experimental data for F2^gamma, two using a standard FFNS approach and two based on ACOT(chi) scheme [2], leading to the FFNS(CJK) and CJK models. We also present the analysis of the uncertainties of the new CJK 2 parton distributions due to the experimental errors, the very first such analysis performed for the photon. This analysis is based on the Hessian method, for a comparison for chosen cross-sections we use also the Lagrange method.Comment: Prepared for Photon 2003: International Conference on the Structure and Interactions of the Photon (Including the 15th International Workshop on Photon-Photon Collisions), Frascati (Italy), 7-11 April 2003; 10 pages, Latex using espcrc2 style, 1 tex and 5 postscript figures; FORTRAN programs available at http://www.fuw.edu.pl/~pjank/param.htm

    Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides

    Get PDF
    Periodically poled lithium niobate (PPLN) waveguides are a powerful platform for efficient wavelength conversion. Conventional PPLN converters, however, typically require long device lengths and high pump powers due to the limited nonlinear interaction strength. Here we use a nanostructured PPLN waveguide to demonstrate an ultrahigh normalized efficiency of 2600%/W−cm^2 for second-harmonic generation of 1.5 μm radiation, more than 20 times higher than that in state-of-the-art diffused waveguides. This is achieved by a combination of sub-wavelength optical confinement and high-fidelity periodic poling at a first-order poling period of 4 μm. Our highly integrated PPLN waveguides are promising for future chip-scale integration of classical and quantum photonic systems

    Ultrabroadband Nonlinear Optics in Dispersion Engineered Periodically Poled Lithium Niobate Waveguides

    Get PDF
    We experimentally demonstrate the first generation of dispersion-engineered periodically poled lithium niobate (PPLN) waveguides. These waveguides achieve ultra-broadband second-harmonic generation (SHG) and multi-octave supercontinuum generation (SCG) with record-low pulse energies

    Mass-spectrometric identification of a novel angiotensin peptide in human plasma

    Get PDF
    Objective— Angiotensin peptides play a central role in cardiovascular physiology and pathology. Among these peptides, angiotensin II (Ang II) has been investigated most intensively. However, further angiotensin peptides such as Ang 1-7, Ang III, and Ang IV also contribute to vascular regulation, and may elicit additional, different, or even opposite effects to Ang II. Here, we describe a novel Ang II-related, strong vasoconstrictive substance in plasma from healthy humans and end-stage renal failure patients. Methods and Results— Chromatographic purification and structural analysis by matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight (MALDI-TOF/TOF) revealed an angiotensin octapeptide with the sequence Ala-Arg-Val-Tyr-Ile-His-Pro-Phe, which differs from Ang II in Ala1 instead of Asp1. Des[Asp1]-[Ala1]-Ang II, in the following named Angiotensin A (Ang A), is most likely generated enzymatically. In the presence of mononuclear leukocytes, Ang II is converted to Ang A by decarboxylation of Asp1. Ang A has the same affinity to the AT1 receptor as Ang II, but a higher affinity to the AT2 receptor. In the isolated perfused rat kidney, Ang A revealed a smaller vasoconstrictive effect than Ang II, which was not modified in the presence of the AT2 receptor antagonist PD 123319, suggesting a lower intrinsic activity at the AT1 receptor. Ang II and Ang A concentrations in plasma of healthy subjects and end-stage renal failure patients were determined by matrix-assisted laser desorption/ionisation mass-analysis, because conventional enzyme immunoassay for Ang II quantification did not distinguish between Ang II and Ang A. In healthy subjects, Ang A concentrations were less than 20% of the Ang II concentrations, but the ratio Ang A / Ang II was higher in end-stage renal failure patients. Conclusion— Ang A is a novel human strong vasoconstrictive angiotensin-derived peptide, most likely generated by enzymatic transformation through mononuclear leukocyte-derived aspartate decarboxylase. Plasma Ang A concentration is increased in end-stage renal failure. Because of its stronger agonism at the AT2 receptor, Ang A may modulate the harmful effects of Ang II. In this study, a new angiotensin-peptide of human plasma is described, which is characterized as a strong AT2-receptor agonist

    Lepton Flavour Violation in a Class of Lopsided SO(10) Models

    Full text link
    A class of predictive SO(10) grand unified theories with highly asymmetric mass matrices, known as lopsided textures, has been developed to accommodate the observed mixing in the neutrino sector. The model class effectively determines the rate for charged lepton flavour violation, and in particular the branching ratio for μ>eγ\mu -> e \gamma, assuming that the supersymmetric GUT breaks directly to the constrained minimal supersymmetric standard model (CMSSM). We find that in light of the combined constraints on the CMSSM parameters from direct searches and from the WMAP satellite observations, the resulting predicted rate for μ>eγ\mu -> e \gamma in this model class can be within the current experimental bounds for low tanβ\tan \beta, but that the next generation of μ>eγ\mu -> e \gamma experiments would effectively rule out this model class if LFV is not detected.Comment: 23 page

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
    corecore