2,460 research outputs found
The Major Heat Shock Proteins, Hsp70 and Hsp90, in 2-Methoxyestradiol-Mediated Osteosarcoma Cell Death Model
2-Methoxyestradiol is one of the natural 17β-estradiol derivatives and a potential novel anticancer agent currently being under evaluation in advanced phases of clinical trials. However, the mechanism of anticancer action of 2-methoxyestradiol has not been yet fully established. In our previous studies we have demonstrated that 2-methoxyestradiol selectively induces the expression and nuclear translocation of neuronal nitric oxide synthase in osteosarcoma 143B cells. Heat shock proteins (Hsps) are factors involved in the regulation of expression and activity of nitric oxide synthases. Herein, we chose osteosarcoma cell lines differed in metastatic potential, metastatic 143B and highly metastatic MG63.2 cells, in order to further investigate the anticancer mechanism of 2-methoxyestradiol. The current study aimed to determine the role of major heat shock proteins, Hsp90 and Hsp70 in 2-methoxyestradiol-induced osteosarcoma cell death. We focused on the implication of Hsp90 and Hsp70 in control under expression of neuronal nitric oxide synthase, localization of the enzyme, and further generation of nitro-oxidative stress. To give the insight into the role of Hsp90 in regulation of anticancer efficacy of 2-methoxyestradiol, we used geldanamycin as a potent Hsp90 inhibitor. Herein, we evidenced that inhibition of Hsp90 controls the protein expression of 2-methoxyestradiol-induced neuronal nitric oxide synthase and inhibits enzyme nuclear translocation. We propose that decreased level of neuronal nitric oxide synthase protein after a combined treatment with 2-methoxyestradiol and geldanamycin is directly associated with the accompanying upregulation of Hsp70 and downregulation of Hsp90. This interaction resulted in abrogation of anticancer efficacy of 2-methoxyestradiol by geldanamycin
Engagement of Academic Libraries and Information Science Schools in Creating Curriculum for Sustainability: An Exploratory Study
In 2010, the Association for the Advancement of Sustainability in Higher Education released, “Sustainability curriculum in higher education: A call to action,” encouraging infusion of sustainability topics into universities\u27 teaching and research. Since then, academic programs and research related to social, economic, and environmental sustainability have enriched university curricula. An exploratory study was conducted to determine the position and engagements of academic libraries and information science schools in their contributions to scholarly sustainability activities and curricular initiatives. This article presents the results of the study which reveals a number of engagements by library professionals in the areas of sustainability, such as increasing open access to research, building sustainability-related collections and research guides, and incorporating sustainability content into information literacy. While academic libraries and information science schools are engaged in a broad spectrum of initiatives that support their institutions\u27 sustainability research and curricular functions, this study indicates that such activities require a more targeted approach
The physiological concentration of ferrous iron (II) alters the inhibitory effect of hydrogen peroxide on CD45, LAR and PTP1B phosphatases
Hydrogen peroxide is an important regulator of protein tyrosine phosphatase activity via reversible oxidation. However, the role of iron in this reaction has not been yet elucidated. Here we compare the influence of hydrogen peroxide and the ferrous iron (reagent for Fenton reaction) on the enzymatic activity of recombinant CD45, LAR, PTP1B phosphatases and cellular CD45 in Jurkat cells. The obtained results show that ferrous iron (II) is potent inhibitor of CD45, LAR and PTP1B, but the inhibitory effect is concentration dependent. We found that the higher concentrations of ferrous iron (II) increase the inactivation of CD45, LAR and PTP1B phosphatase caused by hydrogen peroxide, but the addition of the physiological concentration (500 nM) of ferrous iron (II) has even a slightly preventive effect on the phosphatase activity against hydrogen peroxide
Geldanamycin and its derivatives as Hsp90 inhibitors
The Hsp90 molecule, one of the most abundant heat shock proteins in mammalian cells, maintains homeostasis and prevents stress-induced cellular damage. Hsp90 is expressed under normal conditions at a level of about 1-2 Percent of total proteins, while its expression increases 2-10 fold in cancer cells. The two main constitutively expressed isoforms of Hsp90 are known as Hsp90-alpha and Hsp90-beta, and their upregulation is associated with tumor progression, invasion and formation of metastases, as well as development of drug resistance. The Hsp90 is a key target for many newly established, potent anticancer agents containing Hsp90 N-terminal ATP binding inhibitors, such as geldanamycin, and its analogues 17AAG and 17DMAG. The therapeutic usage of geldanamycin has been limited due to its poor water solubility and severe hepatotoxicity. Therefore, its analogues, including 17AAG, 17DMAG, Tanespimycin and Retaspimycin hydrochloride, with improved pharmacokinetic profiles, have been developed
Combining frequency and time domain approaches to systems with multiple spike train input and output
A frequency domain approach and a time domain approach have been combined in an investigation of the behaviour of the primary and secondary endings of an isolated muscle spindle in response to the activity of two static fusimotor axons when the parent muscle is held at a fixed length and when it is subjected to random length changes. The frequency domain analysis has an associated error process which provides a measure of how well the input processes can be used to predict the output processes and is also used to
specify how the interactions between the recorded processes
contribute to this error. Without assuming stationarity of the input, the time domain approach uses a sequence of probability models of increasing complexity in which the number of input processes to the model is progressively increased. This feature of the time domain approach was used to identify a preferred direction of interaction between the processes underlying the generation of the activity of the primary and secondary endings. In the presence of fusimotor activity and dynamic length changes imposed on the muscle, it was shown that the activity of the primary and secondary endings carried different information about the effects of the inputs imposed on the muscle spindle. The results presented in this work emphasise that the analysis of the behaviour of complex
systems benefits from a combination of frequency and time
domain methods
Joint genomic and proteomic analysis identifies meta-trait characteristics of virulent and non-virulent Staphylococcus aureus strains
Staphylococcus aureus is an opportunistic pathogen of humans and warm-blooded animals and presents a growing threat in terms of multi-drug resistance. Despite numerous studies, the basis of staphylococcal virulence and switching between commensal and pathogenic phenotypes is not fully understood. Using genomics, we show here that S. aureus strains exhibiting virulent (VIR) and non-virulent (NVIR) phenotypes in a chicken embryo infection model genetically fall into two separate groups, with the VIR group being much more cohesive than the NVIR group. Significantly, the genes encoding known staphylococcal virulence factors, such as clumping factors, are either found in different allelic variants in the genomes of NVIR strains (compared to VIR strains) or are inactive pseudogenes. Moreover, the pyruvate carboxylase and gamma-aminobutyrate permease genes, which were previously linked with virulence, are pseudogenized in NVIR strain ch22. Further, we use comprehensive proteomics tools to characterize strains that show opposing phenotypes in a chicken embryo virulence model. VIR strain CH21 had an elevated level of diapolycopene oxygenase involved in staphyloxanthin production (protection against free radicals) and expressed a higher level of immunoglobulin-binding protein Sbi on its surface compared to NVIR strain ch22. Furthermore, joint genomic and proteomic approaches linked the elevated production of superoxide dismutase and DNA-binding protein by NVIR strain ch22 with gene duplications
Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials?
Recommended from our members
Total Sitting Time and Sitting Pattern in Postmenopausal Women Differ by Hispanic Ethnicity and are Associated With Cardiometabolic Risk Biomarkers.
Background Sedentary behavior is pervasive, especially in older adults, and is associated with cardiometabolic disease and mortality. Relationships between cardiometabolic biomarkers and sitting time are unexplored in older women, as are possible ethnic differences. Methods and Results Ethnic differences in sitting behavior and associations with cardiometabolic risk were explored in overweight/obese postmenopausal women (n=518; mean±SD age 63±6 years; mean body mass index 31.4±4.8 kg/m2). Accelerometer data were processed using validated machine-learned algorithms to measure total daily sitting time and mean sitting bout duration (an indicator of sitting behavior pattern). Multivariable linear regression was used to compare sitting among Hispanic women (n=102) and non-Hispanic women (n=416) and tested associations with cardiometabolic risk biomarkers. Hispanic women sat, on average, 50.3 minutes less/day than non-Hispanic women (P<0.001) and had shorter (3.6 minutes less, P=0.02) mean sitting bout duration. Among all women, longer total sitting time was deleteriously associated with fasting insulin and triglyceride concentrations, insulin resistance, body mass index and waist circumference; longer mean sitting bout duration was deleteriously associated with fasting glucose and insulin concentrations, insulin resistance, body mass index and waist circumference. Exploratory interaction analysis showed that the association between mean sitting bout duration and fasting glucose concentration was significantly stronger among Hispanic women than non-Hispanic women (P-interaction=0.03). Conclusions Ethnic differences in 2 objectively measured parameters of sitting behavior, as well as detrimental associations between parameters and cardiometabolic biomarkers were observed in overweight/obese older women. The detrimental association between mean sitting bout duration and fasting glucose may be greater in Hispanic women than in non-Hispanic women. Corroboration in larger studies is warranted
Mucosal Administration of Collagen V Ameliorates the Atherosclerotic Plaque Burden by Inducing Interleukin 35-dependent Tolerance
We have shown previously that collagen V (col(V)) autoimmunity is a consistent feature of atherosclerosis in human coronary artery disease and in the Apoe(-/-) mouse model. We have also shown sensitization of Apoe(-/-) mice with col(V) to markedly increase the atherosclerotic burden, providing evidence of a causative role for col(V) autoimmunity in atherosclerotic pathogenesis. Here we sought to determine whether induction of immune tolerance to col(V) might ameliorate atherosclerosis, providing further evidence for a causal role for col(V) autoimmunity in atherogenesis and providing insights into the potential for immunomodulatory therapeutic interventions. Mucosal inoculation successfully induced immune tolerance to col(V) with an accompanying reduction in plaque burden in Ldlr(-/-) mice on a high-cholesterol diet. The results therefore demonstrate that inoculation with col(V) can successfully ameliorate the atherosclerotic burden, suggesting novel approaches for therapeutic interventions. Surprisingly, tolerance and reduced atherosclerotic burden were both dependent on the recently described IL-35 and not on IL-10, the immunosuppressive cytokine usually studied in the context of induced tolerance and amelioration of atherosclerotic symptoms. In addition to the above, using recombinant protein fragments, we were able to localize two epitopes of the α1(V) chain involved in col(V) autoimmunity in atherosclerotic Ldlr(-/-) mice, suggesting future courses of experimentation for the characterization of such epitopes
- …
