8 research outputs found

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Characteristic facial features and cortical blindness distinguish the DOCK7‐related epileptic encephalopathy

    No full text
    Abstract Background The epileptic encephalopathies display extensive locus and allelic heterogeneity. Biallelic truncating DOCK7 variants were recently reported in five children with early‐onset epilepsy, intellectual disability, and cortical blindness, indicating that DOCK7 deficiency causes a specific type of epileptic encephalopathy. Methods We identified 23‐ and 27‐year‐old siblings with the clinical pattern reported for DOCK7 deficiency, and conducted genome‐wide linkage analysis and WES. The consequences of a DOCK7 variant were analyzed on the transcript and protein level in patients’ fibroblasts. Results We identified a novel homozygous DOCK7 frameshift variant, an intragenic tandem duplication of 124‐kb, previously missed by CGH array, in adult patients. Patients display atrophy in the occipital lobe and pontine hypoplasia with marked pontobulbar sulcus, and focal atrophy of occasional cerebellar folia is a novel finding. Recognizable dysmorphic features include normo‐brachycephaly, narrow forehead, low anterior and posterior hairlines, prominent ears, full cheeks, and long eyelashes. Our patients function on the level of 4‐year‐old children, never showed signs of regression, and seizures are largely controlled with multi‐pharmacotherapy. Studies of patients’ fibroblasts showed nonsense‐mediated RNA decay and lack of DOCK7 protein. Conclusion DOCK7 deficiency causes a definable clinical entity, a recognizable type of epileptic encephalopathy

    Vascular dysfunction following breath-hold diving

    No full text
    The pathogenesis of predominantly neurological decompression sickness (DCS) is multifactorial. In SCUBA diving, besides gas bubbles, DCS has been linked to microparticle release, impaired endothelial function, and platelet activation. This study focused on vascular damage and its potential role in the genesis of DCS in breath-hold diving. Eleven breath-hold divers participated in a field study comprising eight deep breath-hold dives with short surface periods and repetitive breath-hold dives lasting for 6 h. Endothelium-dependent vasodilation of the brachial artery, via flow-mediated dilation (FMD), and the number of microparticles (MPs) were assessed before and after each protocol. All measures were analyzed by two-way within-subject ANOVA (2 × 2 ANOVA; factors: time and protocol). Absolute FMD was reduced following both diving protocols (p < 0.001), with no interaction (p = 0.288) or main effect of protocol (p = 0.151). There was a significant difference in the total number of circulating MPs between protocols (p = 0.007), where both increased post-dive (p = 0.012). The number of CD31+/CD41– and CD66b+ MP subtypes, although different between protocols (p < 0.001), also increased by 41.0% ± 56.6% (p = 0.050) and 60.0% ± 53.2% (p = 0.045) following deep and repetitive breath-hold dives, respectively. Both deep and repetitive breath-hold diving lead to endothelial dysfunction that may play an important role in the genesis of neurological DCS.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Magnetic Resonance Spectroscopy in Diagnosis and Follow-Up of Gliomas: State-of-the-Art

    No full text
    Preoperative grade prediction is important in diagnostics of glioma. Even more important can be follow-up after chemotherapy and radiotherapy of high grade gliomas. In this review we provide an overview of MR-spectroscopy (MRS), technical aspects, and different clinical scenarios in the diagnostics and follow-up of gliomas in pediatric and adult populations. Furthermore, we provide a recap of the current research utility and possible future strategies regarding proton- and phosphorous-MRS in glioma research

    Preparation of cellulosic fibers with biological activity by immobilization of trypsin on periodate oxidized viscose fibers

    No full text
    In this study, a biologically active fibrous material was designed by immobilizing trypsin on viscose fibers. The viscose yarn was first oxidized with sodium periodate to produce aldehyde groups and then employed as a support for subsequent immobilization of trypsin through bovine serum albumin. The oxidation by sodium periodate caused changes in the chemical and physical properties of the modified yarn samples, which were evaluated by determining the aldehyde group content, fineness and tensile strength of yarn. The viscose fibers oxidized under the most severe conditions (0.4 % NaIO4, 360 min) exhibited the maximum amount of introduced aldehyde groups (1.284 mmol/g), but also the highest decrease in tensile strength. The trypsin activity was assayed with N-alpha-benzoyl-DL-arginine p-nitroanilide hydrochloride, whereas the amount of bound trypsin was determined by Bradford method. Trypsin immobilized on oxidized viscose yarn retained 97.3 and 83.8 % of the initial activity over 60 days of storage at 4 and 25 A degrees C, respectively, and remained firmly attached to the carrier. The potential application of obtained bioactive fibers is in the treatment of wounds
    corecore