96 research outputs found

    Protein kinase substrate identification on functional protein arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms.</p> <p>Results</p> <p>To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption.</p> <p>Conclusion</p> <p>Functional protein microarrays are an important new tool that enables multiplex analysis of protein phosphorylation, and thus can be utilized to identify novel kinase substrates. Integrating this technology with a systems biology approach to cell signalling will help uncover new layers in our understanding of this essential class of enzymes.</p

    The genetic architecture of dog ownership: large-scale genome-wide association study in 97,552 European-ancestry individuals

    Get PDF
    Dog ownership has been associated with several complex traits, and there is evidence of genetic influence. We performed a genome-wide association study of dog ownership through a meta-analysis of 31,566 Swedish twins in 5 discovery cohorts and an additional 65,986 European-ancestry individuals in 3 replication cohorts from Sweden, Norway, and the United Kingdom. Association tests with >7.4 million single-nucleotide polymorphisms were meta-analyzed using a fixed effect model after controlling for population structure and relatedness. We identified 2 suggestive loci using discovery cohorts, which did not reach genome-wide significance after meta-analysis with replication cohorts. Single-nucleotide polymorphism-based heritability of dog ownership using linkage disequilibrium score regression was estimated at 0.123 (CI 0.038–0.207) using the discovery cohorts and 0.018 (CI −0.002 to 0.039) when adding in replication cohorts. Negative genetic correlation with complex traits including type 2 diabetes, depression, neuroticism, and asthma was only found using discovery summary data. Furthermore, we did not identify any genes/gene-sets reaching even a suggestive level of significance. This genome-wide association study does not, by itself, provide clear evidence on common genetic variants that influence dog ownership among European-ancestry individuals.publishedVersio

    Genome-wide association study of {REM} sleep behavior disorder identifies polygenic risk and brain expression effects

    Get PDF
    AbstractRapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    Genetic mechanisms of critical illness in Covid-19.

    Get PDF
    Host-mediated lung inflammation is present,1 and drives mortality,2 in critical illness caused by Covid-19. Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development.3 Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study(GWAS) in 2244 critically ill Covid-19 patients from 208 UK intensive care units (ICUs). We identify and replicate novel genome-wide significant associations, on chr12q24.13 (rs10735079, p=1.65 [Formula: see text] 10-8) in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), on chr19p13.2 (rs2109069, p=2.3 [Formula: see text] 10-12) near the gene encoding tyrosine kinase 2 (TYK2), on chr19p13.3 (rs2109069, p=3.98 [Formula: see text] 10-12) within the gene encoding dipeptidyl peptidase 9 (DPP9), and on chr21q22.1 (rs2236757, p=4.99 [Formula: see text] 10-8) in the interferon receptor gene IFNAR2. We identify potential targets for repurposing of licensed medications: using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease; transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms, and mediators of inflammatory organ damage in Covid-19. Both mechanisms may be amenable to targeted treatment with existing drugs. Large-scale randomised clinical trials will be essential before any change to clinical practice

    Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan

    Get PDF
    Abstract: The timing of puberty is highly variable and is associated with long-term health outcomes. To date, understanding of the genetic control of puberty timing is based largely on studies in women. Here, we report a multi-trait genome-wide association study for male puberty timing with an effective sample size of 205,354 men. We find moderately strong genomic correlation in puberty timing between sexes (rg = 0.68) and identify 76 independent signals for male puberty timing. Implicated mechanisms include an unexpected link between puberty timing and natural hair colour, possibly reflecting common effects of pituitary hormones on puberty and pigmentation. Earlier male puberty timing is genetically correlated with several adverse health outcomes and Mendelian randomization analyses show a genetic association between male puberty timing and shorter lifespan. These findings highlight the relationships between puberty timing and health outcomes, and demonstrate the value of genetic studies of puberty timing in both sexes

    Long-term cellular immunity of vaccines for Zaire Ebola Virus Diseases

    Get PDF
    Recent Ebola outbreaks underscore the importance of continuous prevention and disease control efforts. Authorized vaccines include Merck’s Ervebo (rVSV-ZEBOV) and Johnson &amp; Johnson’s two-dose combination (Ad26.ZEBOV/MVA-BN-Filo). Here, in a five-year follow-up of the PREVAC randomized trial (NCT02876328), we report the results of the immunology ancillary study of the trial. The primary endpoint is to evaluate long-term memory T-cell responses induced by three vaccine regimens: Ad26–MVA, rVSV, and rVSV–booster. Polyfunctional EBOV-specific CD4+ T-cell responses increase after Ad26 priming and are further boosted by MVA, whereas minimal responses are observed in the rVSV groups, declining after one year. In-vitro expansion for eight days show sustained EBOV-specific T-cell responses for up to 60 months post-prime vaccination with both Ad26-MVA and rVSV, with no decline. Cytokine production analysis identify shared biomarkers between the Ad26-MVA and rVSV groups. In secondary endpoint, we observed an elevation of pro-inflammatory cytokines at Day 7 in the rVSV group. Finally, we establish a correlation between EBOV-specific T-cell responses and anti-EBOV IgG responses. Our findings can guide booster vaccination recommendations and help identify populations likely to benefit from revaccination
    corecore