288 research outputs found
Exchange-Repairs: Managing Inconsistency in Data Exchange
In a data exchange setting with target constraints, it is often the case that
a given source instance has no solutions. In such cases, the semantics of
target queries trivialize. The aim of this paper is to introduce and explore a
new framework that gives meaningful semantics in such cases by using the notion
of exchange-repairs. Informally, an exchange-repair of a source instance is
another source instance that differs minimally from the first, but has a
solution. Exchange-repairs give rise to a natural notion of exchange-repair
certain answers (XR-certain answers) for target queries. We show that for
schema mappings specified by source-to-target GAV dependencies and target
equality-generating dependencies (egds), the XR-certain answers of a target
conjunctive query can be rewritten as the consistent answers (in the sense of
standard database repairs) of a union of conjunctive queries over the source
schema with respect to a set of egds over the source schema, making it possible
to use a consistent query-answering system to compute XR-certain answers in
data exchange. We then examine the general case of schema mappings specified by
source-to-target GLAV constraints, a weakly acyclic set of target tgds and a
set of target egds. The main result asserts that, for such settings, the
XR-certain answers of conjunctive queries can be rewritten as the certain
answers of a union of conjunctive queries with respect to the stable models of
a disjunctive logic program over a suitable expansion of the source schema.Comment: 29 pages, 13 figures, submitted to the Journal on Data Semantic
Mars riometer system
A riometer (relative ionospheric opacity meter) measures
the intensity of cosmic radio noise at the surface of a planet.
When an electromagnetic wave passes through the
ionosphere collisions between charged particles (usually
electrons) and neutral gases remove energy from the wave.
By measuring the received signal intensity at the planet's
surface and comparing it to the expected value (the quietday
curve) a riometer can deduce the absorption
(attenuation) of the trans-ionospheric signal. Thus the
absorption measurements provide an indication of ionisation
changes occurring in the ionosphere.
To avoid the need for orbiting sounders riometers use the
cosmic noise background as a signal source. Earth-based
systems are not subject to the challenging power, volume
and mass restriction that would apply to a riometer for
Mars. Some Earth-based riometers utilise phased-array
antennas in order to provide an imaging capability.UnpublishedVienna - Austria3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeope
Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription
Circumscription is a representative example of a nonmonotonic reasoning
inference technique. Circumscription has often been studied for first order
theories, but its propositional version has also been the subject of extensive
research, having been shown equivalent to extended closed world assumption
(ECWA). Moreover, entailment in propositional circumscription is a well-known
example of a decision problem in the second level of the polynomial hierarchy.
This paper proposes a new Boolean Satisfiability (SAT)-based algorithm for
entailment in propositional circumscription that explores the relationship of
propositional circumscription to minimal models. The new algorithm is inspired
by ideas commonly used in SAT-based model checking, namely counterexample
guided abstraction refinement. In addition, the new algorithm is refined to
compute the theory closure for generalized close world assumption (GCWA).
Experimental results show that the new algorithm can solve problem instances
that other solutions are unable to solve
Allen's Interval Algebra Makes the Difference
Allen's Interval Algebra constitutes a framework for reasoning about temporal
information in a qualitative manner. In particular, it uses intervals, i.e.,
pairs of endpoints, on the timeline to represent entities corresponding to
actions, events, or tasks, and binary relations such as precedes and overlaps
to encode the possible configurations between those entities. Allen's calculus
has found its way in many academic and industrial applications that involve,
most commonly, planning and scheduling, temporal databases, and healthcare. In
this paper, we present a novel encoding of Interval Algebra using answer-set
programming (ASP) extended by difference constraints, i.e., the fragment
abbreviated as ASP(DL), and demonstrate its performance via a preliminary
experimental evaluation. Although our ASP encoding is presented in the case of
Allen's calculus for the sake of clarity, we suggest that analogous encodings
can be devised for other point-based calculi, too.Comment: Part of DECLARE 19 proceeding
Smoothed Particle Magnetohydrodynamics II. Variational principles and variable smoothing length terms
In this paper we show how a Lagrangian variational principle can be used to
derive the SPMHD (smoothed particle magnetohydrodynamics) equations for ideal
MHD. We also consider the effect of a variable smoothing length in the SPH
kernels after which we demonstrate by numerical tests that the consistent
treatment of terms relating to the gradient of the smoothing length in the
SPMHD equations significantly improves the accuracy of the algorithm. Our
results complement those obtained in a companion paper (Price and Monaghan
2003a, paper I) for non ideal MHD where artificial dissipative terms were
included to handle shocks.Comment: 14 pages, 4 figures, accepted to MNRA
Comparison of automated video tracking systems in the open field test : ANY-Maze versus EthoVision XT
This project included funding from the Innovative Medicines Initiative 2/EFPIA, European Quality in Preclinical Data (EQIPD) consortium under grant agreement number 777364. We would also like to acknowledge the staff of the Medical Research Facility for their support with animal care, handling and behavioural experiments.Peer reviewedPostprin
On the characterization of magnetic reconnection in global MHD simulations
The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency
- …