160 research outputs found

    Emulating Thin Clients and Voice-over-IP with Wane

    Full text link
    Volume 2 Issue 8 (August 2014

    Uncertainties in dynamic response of buildings with non-linear base-isolators

    Get PDF
    Dynamic response of base-isolated buildings under uni-directional sinusoidal base excitation is numerically investigated considering uncertainties in the isolation and excitation parameters. The buildings are idealized as single degree of freedom (SDOF) system and multi-degrees of freedom (MDOF) system with one lateral degree of freedom at each floor level. The isolation system is modeled using two different mathematical models such as: (i) code-recommended equivalent linear elastic-viscous damping model and (ii) bi-linear hysteretic model. The uncertain parameters of the isolator considered are time period, damping ratio, and yield displacement. Moreover, the amplitude and frequency of the sinusoidal base excitation function are considered uncertain. The uncertainty propagation is investigated using generalized polynomial chaos (gPC) expansion technique. The unknown gPC expansion coefficients are obtained by non-intrusive sparse grid collocation scheme. Efficiency of the technique is compared with the sampling method of Monte Carlo (MC) simulation. The stochastic response quantities of interest considered are bearing displacement and top floor acceleration of the building. Effects of individual uncertain parameters on the building response are quantified using sensitivity analyses. Effect of various uncertainty levels of the input parameters on the dynamic response of the building is also investigated. The peak bearing displacement and top floor acceleration are more influenced by the amplitude and frequency of the sinusoidal base excitation function. The effective time period of the isolation system also produces a considerable influence. However, in the presence of similar uncertainty level in the time period, amplitude and frequency of the sinusoidal forcing function, the effect of uncertainties in the other parameters of the isolator (e.g., damping ratio and yield displacement) is comparatively less. Interestingly, the mean values of the response quantities are found to be higher than the deterministic values in several instances, indicating the need of conducting stochastic analysis. The gPC expansion technique presented here is found to be a computationally efficient yet accurate alternative to the MC simulation for numerically modeling the uncertainty propagation in the dynamic response analyses of the base-isolated buildings

    Design, synthesis, and unraveling the antibacterial and antibiofilm potential of 2-azidobenzothiazoles: insights from a comprehensive in vitro study

    Get PDF
    The present study reports the synthesis of 2-azidobenzothiazoles from substituted 2-aminobenzothiazoles using sodium nitrite and sodium azide under mild conditions. All the synthesized compounds were examined for their antibacterial activity against Gram (+) bacteria, Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 51299), Bacillus cereus (ATCC 10876) and Gram (−) bacteria, Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 10145), Klebsiella pneumonia (ATCC BAA-2146)and clinical isolates of Gram (+) Methicillin Resistant S. aureus (MRSA) and Multi Drug Resistant E. coli. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values by broth dilution method revealed that compound 2d exhibited significant antibacterial potential against E. faecalis and S. aureus with MIC of 8 Όg/mL, while other synthesized compounds had only moderate effects against all the tested species. The compound significantly inhibited the biofilm formation of the bacterial strains below its MIC. The selective cytotoxicity of Compound 2d towards bacterial cells was evidenced on extended exposure of Human Embryonic Kidney-293 cell line to higher concentrations of the compound. Hence, the present study confirmed that compound 2d can be a potential drug candidate for future development as an antibacterial drug

    Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects

    Get PDF
    A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study

    Soil pH mediates the balance between stochastic and deterministic assembly of bacteria

    Get PDF
    Little is known about the factors affecting the relative influences of stochastic and deterministic processes that govern the assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities using six different successional soil datasets distributed across different regions. Different relationships between pH and successional age across these datasets allowed us to separate the influences of successional age (i.e., time) from soil pH. We found that extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial communities through deterministic processes, whereas pH conditions close to neutral lead to phylogenetically less clustered bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when studying globally distributed samples collected without regard for successional age. This dataset confirmed the strong influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes shape soil bacterial community assembly is a consequence of soil pH rather than successional age

    Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL

    Get PDF
    The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range

    Evidence and gap map of studies assessing the effectiveness of interventions for people with disabilities in low‐and middle‐income countries

    Get PDF
    Background: There are approximately 1 billion people in the world with some form of disability. This corresponds to approximately 15% of the world's population (World Report on Disability, 2011). The majority of people with disabilities (80%) live in low- and middle-income countries (LMICs), where disability has been shown to disproportionately affect the most disadvantaged sector of the population. Decision makers need to know what works, and what does not, to best invest limited resources aimed at improving the well-being of people with disabilities in LMICs. Systematic reviews and impact evaluations help answer this question. Improving the availability of existing evidence will help stakeholders to draw on current knowledge and to understand where new research investments can guide decision-making on appropriate use of resources. Evidence and gap maps (EGMs) contribute by showing what evidence there is, and supporting the prioritization of global evidence synthesis needs and primary data collection. Objectives: The aim of this EGM is to identify, map and describe existing evidence of effectiveness studies and highlight gaps in evidence base for people with disabilities in LMICs. The map helps identify priority evidence gaps for systematic reviews and impact evaluations. Methods: The EGM included impact evaluation and systematic reviews assessing the effect of interventions for people with disabilities and their families/carers. These interventions were categorized across the five components of community-based rehabilitation matrix; health, education, livelihood, social and empowerment. Included studies looked at outcomes such as, health, education, livelihoods, social inclusion and empowerment, and were published for LMICs from 2000 onwards until January 2018. The searches were conducted between February and March 2018. The EGM is presented as a matrix in which the rows are intervention categories (e.g., health) and subcategories (e.g., rehabilitation) and the column outcome domains (e.g., health) and subdomains (e.g., immunization). Each cell lists the studies for that intervention for those outcomes, with links to the available studies. Included studies were therefore mapped according to intervention and outcomes assessed and additional filters as region, population and study design were also coded. Critical appraisal of included systematic review was done using A Measurement Tool to Assess Systematic Reviews’ rating scale. We also quality-rated the impact evaluation using a quality assessment tool based on various approaches to risk of bias assessment. Results: The map includes 166 studies, of which 59 are systematic reviews and 107 impact evaluation. The included impact evaluation are predominantly quasiexperimental studies (47%). The numbers of studies published each year have increased steadily from the year 2000, with the largest number published in 2017.The studies are unevenly distributed across intervention areas. Health is the most heavily populated area of the map. A total of 118 studies of the 166 studies concern health interventions. Education is next most heavily populated with 40 studies in the education intervention/outcome sector. There are relatively few studies for livelihoods and social, and virtually none for empowerment. The most frequent outcome measures are health-related, including mental health and cognitive development (n = 93), rehabilitation (n = 32), mortality and morbidity (n = 23) and health check-up (n = 15). Very few studies measured access to assistive devices, nutrition and immunization. Over half (n = 49) the impact evaluation come from upper-middle income countries. There are also geographic gaps, most notably for low income countries (n = 9) and lower-middle income countries (n = 34). There is a fair amount of evidence from South Asia (n = 73) and Sub-Saharan Africa (n = 51). There is a significant gap with respect to study quality, especially with respect to impact evaluation. There appears to be a gap between the framing of the research, which is mostly within the medical model and not using the social model of disability. Conclusion: Investing in interventions to improve well-being of people with disabilities will be critical to achieving the 2030 agenda for sustainable development goals. The EGM summarized here provides a starting point for researchers, decision makers and programme managers to access the available research evidence on the effectiveness of interventions for people with disabilities in LMICs in order to guide policy and programme activity, and encourage a more strategic, policy-oriented approach to setting the future research agenda
    • 

    corecore